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ABSTRACT 

A framework to validate the predicted motion of a 
computer human model (Santos) is presented in this 
work. The proposed validation framework is a task-
based methodology. It depends on the comparison of 
selected motion determinants and joint angles that play 
major roles in the task, using qualitative and quantitative 
statistical techniques. In the present work, the validation 
of Santos walking will be presented. Fortunately, the 
determinants for normal walking are well defined in the 
literature and can be represented by (i) hip 
flexion/extension, (ii) knee flexion/extension, (iii) ankle 
plantar/dorsiflexion, (iv) pelvic tilt, (v) pelvic rotation, and 
(vi) lateral pelvic displacement. While Santos is an 
ongoing research project, the results have shown 
significant qualitative agreements between the walking 
determinants of Santos and the walking determinants of 
four normal subjects. 
 
INTRODUCTION 

Digital human modeling has attracted considerable 
attention in recent years, and this has heightened the 
need to model normal human locomotion due to its 
important role in many medical and industrial 
applications. There are many attempts in the literature to 
model human walking [1-3]. Approaches that attempt to 
solve for human walking motions based on performance 
optimization [4-6] are shown to be suitable for 
reproduction of realistic human motions. In this case, 
objective functions are used to represent human 
performance measures, and optimization schemes are 
developed to solve for the feasible joint motion profiles 
that extremize the performance measures [7-8]. The 
works in this category are important because the human 
motions are not artificially constrained and are 
dynamically feasible.  

One interesting characteristic of the optimization-based 
techniques is their tendency to introduce more than one 
feasible solution; this behavior is consistent with natural 
human behavior where people do tasks in various 
manners. If well formulated, the methodology may 

present optimal solutions that can be very useful for 
many applications such as training. However, the 
solution space of the optimization-based approaches 
can be narrowed down to obtain a one task-based 
solution. For example, in normal walking, the ranges of 
joint angle movement are well defined and therefore can 
be imposed as constraints to achieve natural walking. 

There have been several attempts in the literature to 
validate the motion of digital human models. Most of 
these human models are based on experimental and 
regression analysis that guide their motion, and 
traditionally the validation process is to show the 
statistical significance of these formulas. 

There are many issues to be considered in validating the 
motion of human models. For example, people with 
different age, gender, race, and anthropometry may 
conduct the same task using different strategies. Also, 
muscle strength and subject fitness play significant roles 
in the resulting motion. Therefore, the latter issues 
should be included in the decision of the validation 
quality. In general, the expectation is that the model 
should be able to model the population in a statistical 
average sense.   

There are additional problems to be considered in the 
validation process. For example, Faraway [9] showed 
the effect of a precise and consistent definition of 
movement start and end points, which are required for 
comparison of motions across and within participants 
and targets. Faraway and others [9-11] have studied the 
effect of the variability in the motion time between 
different subjects and within the same subject when they 
conducted a similar task, on the validation process. In 
this regard, they proposed a methodology to normalize 
the motion time and define t=0 to be the start of the 
motion and t=1 to be the end of the motion. 

The challenge in the current work is to validate the 
motion of a predictive human model (Santos) whose 
motion is completely based on general equations of 
physics and some natural constraints. Besides the 



inertia forces, Santos’s prediction is sensitive to the 
effects of the external forces. Therefore, it is very 
important to choose a comparable environment for the 
model and the subjects during the validation process. 
Additionally, due to the important role of the stance time 
and the swing time in the walking determinants, the 
proposed validation protocol is also designed to check 
the quality of the data within these intervals. 

The objective of this article is to present the 
development of a framework of a validation protocol to 
test the capability of Santos to simulate normal human 
walking activities. Toward this end, a twelve-camera 
Vicon motion capture system was used to collect 3D 
motion data of four subjects walking normally inside the 
motion capture lab.  

MOTION CAPTURE PROCESS 

There are many techniques and devices on the 
market for measuring 3D motion data. Examples include 
electromagnetic sensors, optical sensors, fiber-optic-
based sensors, and inertia sensors. Some of these 
devices, such as the electromagnetic sensors, may 
suffer from interference problems with other equipment 
in the testing environment; others, such as fiber-optic-
based and inertia sensors, are normally capable of 
producing only local information and therefore may need 
to be supplemented with global positioning devices such 
as gyroscopes. The optical sensors approach is both 
effective and efficient for collecting objective data for 3D 
motion analysis. Today, optical systems have many 
applications in biomechanical studies [12-16]. These 
systems have been shown to be accurate, repeatable, 
and consistent [17], and, as an additional benefit, there 
is no pain or risk involved in using such systems. In the 
motion capture process, a number of reflective markers 
are attached over bony landmarks on the participant’s 
body, such as the elbow, the clavicle, or the vertebral 
spinous processes. As the participant walks or carries 
out a given physical task or function, the position history 
of each marker is captured using an array of infrared 
cameras.  

There are many advantages to using optical motion 
capture systems to collect motion data. First, the 
markers are passive sensors, meaning that they are 
merely reflective surfaces and can be attached easily to 
any area on the body of the subject without requiring 
wires to connect them to a data collection system. 
Second, theoretically, only three markers are required to 
define the three-dimensional velocity and acceleration of 
each body segment. In this work, the time history of the 
location of the reflective markers was collected at a rate 
of 100 frames per second. Power spectrum analyses 
were conducted on the accelerometers’ signals and a 
cut-off frequency of 8Hz was identified for subsequent 
data smoothing. 
 
MARKER PLACEMENT PROTOCOL 

The Santos Marker Placement Protocol (Fig.1), 
developed by CCAD researchers, was used to prepare 
the subjects for the normal walking motion capture.  In 

this protocol, markers were placed on the subjects to 
highlight bony landmarks and identify segments between 
joints in line with previously identified guidelines and 
suggestions [18-19].  The marker placement protocol 
was defined based on the skeleton of the virtual human 
Santos, which is based on the Denavit-Hartenberg (DH) 
method, in which 4 4×  homogeneous transformation 
matrices relate two adjacent coordinate systems [20].  
The skeleton of Santos includes the major joints present 
in the human body with the number of spine joints 
reduced to four. Inverse kinematics problem or vector 
analysis is normally used to solve for various joint 
angles.  

 
Figure 1: Santos marker placement protocol 

 
In the protocol, markers were placed around joint 
centers to determine the center of motion.  For example, 
three markers were placed around the knee.  One 
marker was placed directly on the medial epicondyle, 
another on the lateral epicondyle, and the third on the 
central anterior patellar surface.  Each of these marker 
positions was identified as an anatomical landmark by 
Cappozzo et al. [18] with the terminology coming from 
the well-defined, classic standards used by Gray and 
Lewis [21].  Various research efforts verify that these 
described anatomical landmarks can be easily used to 
identify the geometric center of the knee.  A similar 
technique was used for the remaining joints of the 
subject.   
 

WALKING DETERMINANTS  

After developing a protocol for collecting and processing 
the data, the next important phase in the validation 
process is to determine the minimum number of 
parameters that define a given motion; these parameters 
are identified to be the determinants of the motion.  If 
Santos has the ability to predict each of these 



determinants within a statistically acceptable range, then 
he can execute the task in a natural way that is 
characteristic of human motion.  Based on the literature 
and a strong understanding of human gait, six angles 
and displacements were chosen to define forward 
walking [22].  These determinants look to the lower 
extremities and pelvic motion of the human and include 
hip flexion/extension, knee flexion/extension, ankle 
plantar/dorsiflexion, pelvic tilt, pelvic rotation, and lateral 
pelvic displacement.  With the exception of lateral pelvic 
displacement, each of the gait determinants is the time 
history of a joint angle.  Joint angles are dimensionless, 
so they become an intrinsic measurement of motion; 
they are independent of anthropometry.  Fig. 2 provides 
a physical representation of some of the lower extremity 
determinants [23].  Below each pictorial representation 
of the determinant is the accepted time history curve as 
presented in the literature [24].  Pelvic motion, which we 
defined to include pelvic tilt, pelvic rotation, and lateral 
pelvic displacement, is not consistently identified in the 
literature; however, we include them in this validation 
because of their significant involvement in normal 
human walking.  
 

 

Figure 2: Pictorial depictions of the lower extremity gait 
determinants. From left to right: hip flexion/extension, 

knee flexion/extension, ankle plantar/dorsiflexion 
 
SUBJECT POPULATION 

The subject population was comprised of four healthy 
male subjects.  The subjects had no history of 
musculoskeletal problems and were reasonably fit.  
Their participation was voluntary, and each subject 
signed a consent form before beginning the experiment.  
The mean height of the subject population was 5’7” with 
a mean weight of 143 lbs.  The average age of the 
participants was 34 years old.   

 
SUBJECT PREPARATION AND DATA 
COLLECTION 
When a subject came in to the motion capture lab, 
he/she put on the motion capture suit and markers were 
placed on his/her body according to the previously 
defined marker placement protocol. Bony landmarks 
were carefully located and corresponding markers were 
placed accordingly.  Our methods for joint center 
calculations are defined based on anatomical detail, so it 

is important that marker positions reflect these 
anatomical reference points [19, 25].   

The subjects were instructed to take several practice 
walks until they were comfortable with the camera setup 
and were showing consistency in their self-selected 
speed.  All of the subjects demonstrated normal walking 
patterns during the experiment. 

The normal walking trial was set up so that the subject 
walked forward at a comfortable speed, stopped, and 
walked backwards to return to the starting position.  On 
average, the subjects took 4-5 steps forward depending 
on preferred step length.  The first and final steps were 
considered acceleration and deceleration, respectively.  
The middle stride was analyzed as a steady state gait 
cycle for normal forward walking.   

The trials were repeated to ensure that the results were 
usable and to examine the consistency of the velocities 
chosen by the subjects.  In addition, every trial began 
and ended with the subject in the same position.  This 
position is known as the T-pose, and it corresponds to 
the initial joint angles and segment locations of the 
skeleton.  Fig. 3 is a photograph of a subject standing in 
the T-pose.  The reflective markers seen on the subject 
correspond to the Santos Marker Placement Protocol.   
 
 
 

 

 

 

 

 

 

 

 

Figure 3: Subject standing in T-pose 

 

VALIDATION  

COMPARISON PROTOCOL  
The experimental protocol used to compare the 
simulation of Santos to the normal human walking trials 
contains the parameters that must be considered for a 
direct comparison of the data.  These parameters 
include the starting position and leading foot of the gait 
cycle.  In addition, the time of the gait cycle must be 
normalized to match the simulation and the initial point 



of comparison must be defined.  The time history of a 
steady state gait cycle was used to represent the cyclic 
motion of walking for each subject.  According to the 
literature, the gait cycle begins with the left heel strike; 
this position was used as the starting point of the gait 
cycle for the experimental and simulated data [24].   
 
QUALITATIVE COMPARISON  
Santos determinant curves as shown in Fig. 4 have 
general trends that closely follow the data that represent 
normal human walking determinants.  If we consider 
each individual determinant (Fig.4), then the Santos 
curve will have significant similarity with the human 
population, and it can be shifted horizontally or vertically 
to get better agreement. However the difficulty with 
normal walking is that the determinants are coupled and, 
in order to achieve normal walking, the Santos curves 
should follow the curves of all the determinants at the 
same time. Even with this requirement, the Santos 
curves have qualitatively similar behaviors to that of 
human population. With a closer look, we can recognize 
some differences in the magnitude of simulated 
flexion/extension in the lower extremities of Santos that 
take place in parts of the gait cycle.  The curve predicted 
for pelvic displacement shows a shift between the 
simulated and experimental data, but the magnitude and 
nature of the curves are consistent.  Santos’s predicted 
dynamics model shows competency for computing the 
pelvic rotation of normal human walking. 
  
QUANTITATIVE COMPARISON  
During the walking trials, each subject walked at a self-
selected speed.  As a result, the time for completion of 
one gait cycle varied between subjects, and a direct 
frame-by-frame comparison of the determinants was not 
realistic.  Therefore, experimental data for each subject 
was normalized by dividing the cycle time by the 
maximum time  to directly evaluate the determinants at a 
percentage of a gait cycle.  For each subject, the time 
scale was normalized such that the initial left heel strike 
occurred at time t = 0 and the subsequent left heel strike 
occurred at time t = 1 [9]. 

The percentage of the gait cycle at some time t signifies 
the progression of the subject through the walking cycle.  
This was used as our standard for comparison of the 
experimental and simulated data.  The six determinants 
were plotted against percentage of the walking cycle for 
each subject and the simulation.  The results are shown 
in Fig. 4. 

In the plots of the determinants versus the percentage of 
the walking cycle, the red line represents the joint angle 
or displacement history predicted by Santos.  The 
remaining curves correspond to the experimental data. 
The number of frames required to complete one walking 
cycle differed between subjects and between trials of 
one subject so an unequal number of points was used to 
describe the motion of each subject.  Consequently, the 
normalization method previously described produced a 
walking cycle from 0-100% for each subject, but the 

increment between successive data points varied 
between subjects based on execution time of the gait 
cycle.  As a result, the data points vary between 
subjects, and this makes it very hard to average the 
values at each data point to find the mean or central 
tendency of the experimental data.  Therefore, the data 
was fitted to a nonparametric model using the B-spline 
fitting technique.   
 
Splines are piecewise polynomial functions that are 
constrained to join at points called knots. We chose 
cubic B-splines for the basis because of their well-known 
stability for numerical calculations in contrast to 
polynomials. Cubic B splines are made to be smooth at 
the knots by forcing the first and second derivatives of 
the functions to agree at the knots. The cubic degree 
allows for continuous first and second derivatives, which 
is important if velocity and acceleration are needed. 
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Figure 4: Normalized walking cycle for four human subjects and Santos

STATISTICAL ANALYSIS  
The variability of a data set can be measured in 
standard deviations or how far each data set lies from 
the mean.  In general, if the simulation falls within two 
standard deviations of the mean, then it can be 
considered agreeable and representative of the motion 
being analyzed [26-27].  We are interested in whether or 
not the digital human model of Santos is capable of 
predicting forward walking that is in agreement with the 
normal population.  Interval of confidence provides limits 
such that there is a high level of confidence that a large 
proportion of values of the variable will fall within them.  
In our case, we want to be 95% confident that the entire 
proportion of values of each determinant of Santos will 
fall within the tolerance limits.  The two standard 
deviation bands correspond to the 95% tolerance bands 
for all the fitted values.   
 
The comparison between the experimental results 
obtained from motion capture and the predicted results 
made by the virtual human Santos are presented in 
Figure 5.  If the simulation lies within the region of the 
upper and lower bounds of the interval of confidence, 
then a strong agreement is shown between the 
simulation and normal human walking.  In other words, if 
the predicted values lie within the region, we can be 
95% confident that Santos’s digital model is capable of 
reliably representing normal forward walking.  

 
The analyses have shown that Santos’s hip 
flexion/extension time history reaches greater maximum 
and minimum peaks than the subject population.  It still 
shows a correlation to normal forward walking, but some 
improvement is needed.  Knee flexion/extension lies 
within the region; however, the curve of the simulation 
differs from normal human motion during the period from 
10-40% of the gait cycle.  There is a lesser degree of 
correlation between the ankle and normal human 
motion, and there may be some constraint that has not 
been considered in the simulation.  From the plots, we 
see that the pelvic rotation of Santos corresponds to the 
pelvic rotation seen in humans during normal forward 
walking. The general trend line of the pelvic tilt seems to 
agree with the experimental curves.  The pelvic tilt falls 
outside the 95% confidence interval from 35% to 50% of 
the gait cycle when the ANOVA test shows that 
P<0.001. In terms of lateral pelvic displacement, the 
simulation provides a relatively normal curve, but the 
peak values occur at different percentages of the gait 
cycle than were seen in the subject population.   
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Subjects mean and 95% interval of confidence with Santos determinants using B-spline fitting

CONCLUSIONS AND DISCUSSIONS  

After obtaining the experimental data, the graph of each 
determinant was plotted against frame number (which 
represents the time).  We noticed that there was a 
difference in the cycle time within the individual subjects 
and when the subjects repeated the trial. While the latter 
is natural behavior and depends on how fast the 
subjects walk during the experiment, it is important in 
this work to have a standard time scale so that the data 
can be used adequately in the comparison process 
during the statistical analysis. Therefore, the first task we 
addressed was how to normalize (standardize) these 
data sets for comparison to the simulation on a set time 
interval.  Also, due to the difference in the starting 
position of each subject and the simulation, the data was 
shifted so that each subject was compared from the left 
heel strike to the subsequent left heel strike.   
 
At first, we tried performing shifts in the x and y-
directions; however, it became apparent that this was 
altering the appearance of the data.  Instead, the 
determinants were found and the initial zero degree 
angles of the subject in the T-pose were subtracted to 
match the subject’s initial position to the simulation data 
and the zero degree position of Santos.  This accounted 
for individual variation in joint limits and initial position 
and was a more useful normalization of the data. 
 

Once the normalization was performed, the experimental 
and simulated gait determinants were plotted together 
for comparison.  At this point, the determinants were 
examined qualitatively and quantitatively.  Differences 
between the simulated and expected data were 
observed and noted so that further improvements could 
be made.  Statistical analysis involved fitting the data 
using a cubic B-spline curve, finding the mean and the 
95% interval of confidence, and using ANOVA tables for 
the analysis of the variance.   
 
The statistical analyses have shown that Santos’s hip 
flexion is a very good indicator of normal human motion 
and lies mostly within the tolerance interval in Fig. 5.  
There is no significant difference in terms of the overall 
mean joint angles of Santos during the gait cycle.  
(P=0.6564).  We noticed that the first 40% of the 
simulated gait cycle agrees very well; however, the 
predicted curve lies outside the tolerance interval from 
approximately 45% to 55% and from 80 to 100% when 
the supporting leg is changing and the center of gravity 
is shifting.  For these periods, P<0.001, suggesting 
improvement is needed. 
 
Knee flexion is simulated well by the digital human 
model except for the period between 10% and 40% of 
the gait cycle.  This is knee flexion during the stance 
phase of the gait cycle, and P<0.001 in the variance 
analysis, suggesting there is a statistically significant 
difference between the simulated and experimental data.  



Analysis of the ankle shows similar discrepancies during 
the stance phase of the gait cycle and some 
improvement may be necessary in the modeling of these 
joints.   
 
The general trend line of the pelvic tilt seems to agree 
with the experimental curves.  Pelvic tilt falls outside the 
95% confidence interval from 35% to 50% of the gait 
cycle when the ANOVA test shows that P<0.001.  This 
represents a significant difference. Pelvic rotation, on the 
other hand, is modeled very well by Santos.  It falls 
within the 95% tolerance band for the entire gait cycle 
and lies close to the mean of the experimental data.  
Lateral pelvic displacement falls outside the tolerance 
interval from 40% to 60% of the gait cycle when the 
ANOVA test shows that P<0.001.  This represents a 
significant difference; however, from qualitative analysis 

it is clear that there is a shift between the data sets, and 
the displacement of Santos occurs before that of normal 
human subjects.   
 
This study has provided the initial validation of normal 
walking predicted by the virtual human model Santos.  
More importantly, it provided a logical and systematic 
approach to virtual human validation.  The proposed 
method of validation is essential to the use and 
dependability of the model, so while it may be improved 
and expanded upon in the future, it has provided the 
foundation for predictive motion validation.  Now that a 
systematic process has been defined and completed, it 
will be used to validate other dynamic human motions 
predicted by Santos. 
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