
2008-01-1922

Multiple User Defined End-Effectors with Shared Memory
Communication for Posture Prediction

Brent Rochambeau, Timothy Marler, Anith Mathai, and Karim Abdel-Malek
Virtual Soldier Research (VSR) Program, University of Iowa

ABSTRACT

Inverse Kinematics on a human model combined with
optimization provides a powerful tool to predict realistic
human postures. A human posture prediction tool brings
up the need for greater flexibility for the user, as well as
efficient computation performance. This paper
demonstrates new methods that were developed for the
application of digital human simulation as a software
package by allowing for any number of user specified
end-effectors and increasing communication efficiency
for posture prediction. The posture prediction package
for the digital human, SantosTM, uses optimization
constrained by end-effectors on the body with targets in
the environment, along with variable cost functions that
are minimized, to solve for all joint angles in a human
body. This results in realistic human postures which can
be used to create optimal designs for things that humans
can physically interact with. Previously the end-effectors
could only be specified in relation to the left and right
wrist and ankle joints. Since the tool was still in
developmental phases, communication between the
software used to visualize the digital human and
environment was done through file I/O. A new
optimization method has been developed and
implemented to allow for any number of user specified
end-effectors, which can be in relation to any joint in the
body. Each end-effector can be constrained to any
individual target in the environment, which allows for
much more flexible interface for a user to define the
boundaries of predicting human posture.
Communication speeds were increased on average by
almost six times through the use of creating a shared
memory block, which can be accessed by posture
prediction code and the application to visualize the
resulting postures at the same time. The combined
results of these additional features for posture prediction
allow for dynamically updating and visualizing of posture
prediction results as new targets for any part of the
human body are created or changed in the environment.
This in turn provides a new intuitive method for creating
a posture prediction simulation which is more interactive
with the user.

INTRODUCTION

A key element with human modeling and thus with
product design is posture prediction. Posture Prediction
gives the ability to predict human posture accurately and
quickly and then provides posture-related feedback to
the user. In response to this need, The Virtual Soldier
Research (VSR) Program has developed an
optimization-based approach to posture prediction that
operates in real time and includes a variety of features.
This paper presents two new advances with
optimization-based posture prediction. First, a method
for specifying end-effectors anywhere on the body was
developed. Secondly, a technique was utilized for
leveraging shared memory as a method of
communication between the posture prediction code and
the user interface, which substantially reduces the total
communication time. Combining the two advancements
allows a user to manipulate any point on an avatar in
real time, while all other components of the avatar are
simultaneously governed by posture prediction. The
result is a powerful new product for human-centric
design.

Predicting human posture is often limited by the location
of end-effectors. End-effectors are points of interest on
the avatar and are typically constrained to specified
locations in the avatar’s environment. When end-
effectors are only related to the end of link segments,
such as the wrists and ankles, the user is limited to
conducting posture prediction studies with which the
avatar touches targets with only the hands or feet. As
computer aided product design become more popular in
an effort to reduce physical prototypes, and thus save
money and time, there is a growing need for more
advanced posture prediction simulations that go beyond
using points on the hands and feet as end-effectors.

Since posture prediction is the key feature that the
application described in this paper advances, a brief
overview of different posture prediction approaches and
advances is provided first. Currently, there are two
fundamental approaches to predicting postures, on the
research side as well with commercially available tools.
One method predicts what human posture looks like
based on prerecorded motion capture, anthropometric

data, and functional regression models (Beck and
Chaffin, 1992; Zhang and Chaffin, 1996; Faraway, 1997;
Das and Behara, 1998; Faraway et al, 1999; Chaffin,
2002).

The second method of predicting posture is done with
traditional inverse kinematics, which does not use any
observed data. A common approach to inverse
kinematics is called the pseudo-inverse method. With
such methods, the motion of each link segment is
modeled to formulate a set of governing joint equations
(Jung et al, 1995; Jung and Choe, 1996; Wang, 1999;
Tolani and Badler, 2000). With this method however, as
the model’s degrees of freedom increase, the systems of
equations become increasingly challenging to solve.

A different inverse kinematics method involves
optimization. Optimization is used to find a set of joint
angle values (each subject to their own constraints), that
are used to minimize certain human performance
measures, such as discomfort. The constraint in the
optimization problem is restricting an end-effector to
reach a target point (Abdel-Malek et al, 2001; Mi et al,
2002). This approach does not require any prerecorded
data and can be computed efficiently (Farrell and Marler,
2004). Most recent advancements concerning the
number of end-effectors in the posture prediction
problem have been creating a dual-arm posture
prediction, where end-effectors are placed at the end of
each arm, each having their own individual constraint
(Farrell and Marler, 2005; Yang et al 2004, 2006, 2007).
When legs are included in the model, end-effector can
also be placed at the end of each leg, since it is also the
end of each link segment. The development of a
multiple end-effectors feature described in this paper
extends the current state of the art and allows a user to
place any number of end-effectors on any part of the
body. This is a new capability with respect both to
research efforts and currently available human-modeling
products. In addition to incorporating multiple end-
effectors, shared memory is leveraged to increase
speed. Shared memory allows multiple programs to
access the same memory location, so when one
program changes a variable’s value, all other programs
that are allowed immediately have access to that
change. This makes it an efficient method of passing
data. If posture prediction is to provide an efficient
design tool, computational efficiency is critical. Trade-off
analysis of various design alterations necessitates the
use of real-time simulations, and shared memory can
enable this. Shared memory is typically used as a
method of inter-process communication, which is a way
of exchanging data between multiple programs running
at the same time. When applications have a need for
more efficient communications and higher performance,
parallel processing is considered, because multiple
processes can run simultaneously. Using shared
memory for this function allows one to avoid expensive
overheads associated with other parallel methods (Wang
et al, 1999). However, shared memory has never been
applied to posture prediction as a way of increasing
speed. To increase the speed of posture prediction to

the point where a user can drag any point on the body
and the simulation can concurrently predict the
consequent joint angles in real time provides a new tool
that saves time and money during ergonomic design
studies.

The following section in this paper provides an overview
of optimization-based posture prediction and how it is
integrated with 3D visualization. We then discuss the
advantages of, and a method for allowing the user to
specify multiple end-effectors anywhere on the body.
After that, shared memory is addressed and how it is
implemented with posture prediction. Finally, we show
how combing multiple end-effectors and shared memory
allows for a new intuitive tool for human modeling
product design, which allows the user to drag any part of
the body with realistic human postures being predicted
and visualized in real time.

OPTIMIZATION-BASED POSTURE PREDICTION

This section discusses the fundamental of optimization-
based posture prediction, as implemented in SantosTM, a
new kind of virtual human developed at VSR (Abdel-
Malek et al, 2006). Marler et al (2005) explain how the
most basic posture prediction problem entails having an
avatar use a natural posture to contact a specified target
point with an end-effector on a kinematic system such as
a human arm. With an optimization-based approach, the
joint angles for all of the degrees-of-freedom (DOFs) in
the human model provide the design variables and are
determined by optimizing an objective function that
represents a human performance measure. These
performance measures can include discomfort, joint
displacement, potential energy, effort, visual acuity, etc.

The interface and all interaction with the user are done
through the Virtools 3D development engine. To date,
this interaction has been conducted as follows. The user
can select through posture prediction options, such as
the performance measures mentioned above, toggle
vision on or off, and toggle collision avoidance on or off.
There are end-effectors in relation to the end of each link
series (left and right wrists and ankles), which the user
can specify targets in the world for each (Farrell et al,
2005). Every time a new target is selected for one of
these end-effectors, Virtools writes out the information
posture prediction needs to input files and runs posture
prediction as an executable. When posture prediction is
run, it reads the input files, calculates the optimal
solution of joint angles, and then writes out that solution
to a separate output file. Virtools, which has been
waiting during this time, then reads the solution file and
applies calculated joint angles to the visualized avatar.
This entire process can be seen in Figure 1, where each
file represents different sets of input data for posture
prediction.

Figure 1. Previous method of communication between Virtools and
posture prediction: file I/O with multiple files containing different sets of
data.

The use of file I/O as a method of communication was
originally chosen for developmental purposes and ease
of debugging. Overall, the whole posture prediction
process takes about .05 seconds, depending on the
complexity of the optimization problem. This speed is
fast enough for a real time prediction, but not fast
enough for a user to drag postures with acceptable
results.

MULTIPLE END-EFFECTORS

The addition of the multiple end-effectors feature to
posture prediction gives the user more freedom and
flexibility to setup a posture prediction simulation.
Previously, the posture prediction code could only
calculate postures for a set number of end-effectors that
also could only be specified in relation to the end of
segment links (left and right wrists and ankles). A
picture of the upper body end-effector locations can be
seen in Figure 2.

Figure 2. Previously, upper body end-effectors could be specified in
relation to the left and right wrist joints.

In order to give the user complete freedom to set up a
posture prediction simulation, he or she should be
allowed to select any part of the digital human’s body as
an end-effector, and give that point an individual target in
the world. This is the basic problem that the multiple
end-effectors feature addresses. In order to accomplish
this, the posture prediction code needs to be able to
perform inverse kinematics for segments in the human
model other than the link ends, and also accept any
number of end-effector/target pairs as input. Once that
is complete, the user interface needs to be updated to
communicate these new inputs to the posture prediction
code, as well as updated to allow a user to select any
part of the digital human body.

Since there can now be any number of end-effectors
accepted by the code, the first important change was
that the variables related to end-effectors and their
targets must now by dynamic. Whenever the code is
executed it should now dynamically allocate the memory
for the necessary arrays associated with those variables.
The optimization problem set up in the code must also
be changed dynamically since each end-effector and
target are individual constraints that must be satisfied.

Posture prediction with SantosTM uses the Denavit-
Hatenberg method (Denavit and Hartenberg, 1955).
With this method, there are individual transformation
matrices that describe the relationship between
connected joints in a robotic model. In the Figure 3, the
first spine joint would be the bottom right degrees of
freedom, which acts as the global position of the world
for SantosTM, and the right wrist would be the top left
degrees of freedom. Targets for the end-effectors are
given in the world with respect to that global spine joint,
so it is necessary to know how far away an end-effector
(which are always defined by the local coordinates of the
parent joint) are from the global coordinate system.

Figure 3. Each joint has its own set of local coordinate systems and
there is a transformation matrix that describes how to get from one to
the next.

Previously, to compute the location of an end-effector in
relation to a global root coordinate system, the posture

prediction code would start at the first spine joint, and
then multiply each transformation matrix along the link
chain out to the end-effector related to the wrist. Once
all transformation matrices are multiplied out and then
multiplied by the local vector related to the last
coordinate system, the global position of the end-effector
is known. This can then be compared to the global
position of its target. The distance between the two is
then used in the optimization problem to be constrained
to zero. With the inclusion of a dual-arm system, the
code would have to compute this twice, one for each
wrist end-effector (Farrell et al, 2005).

In order to use multiple end-effectors, the code must
now loop for each end-effector. End-effectors are
related to their closest parent joint (i.e. end-effector on
the forearm is related to the last elbow joint). However,
since end-effectors can now be placed anywhere on the
body, the multiplication of transformation matrices for a
certain end-effector must stop at that parent joint, and
then compute the position from the global root joint.
Figure 4 demonstrates the relationship between end-
effectors on the human body and the parent coordinate
system they are taken with respect to. The distance
between each end-effector and target can now be
computed, and the optimization code can run until each
pair or end-effectors and targets is essentially equal,
which results in a realistic human posture for the digital
human while end-effectors are constrained to touching
the targets. This solution is expressed in joint angles for
the entire body.

Figure 4. Several end-effectors (blue spheres) and their local parent
joint coordinate systems in which their coordinates are related to.

On the interface side, end-effectors are also now
variable and dynamic. Every time a user creates a new
end-effector on the digital human’s body, its local
position in relation to its parent joint must be determined.
End-effector local positions and the targets associated to
each end-effector are inputs to the posture prediction
code. The interface must make sure to only execute
posture prediction when a new end-effector and target
pair has been created by the user (only creating new

targets without paired end-effectors or vice versa should
not result in a new posture).

Combing the interface and code together now allows the
user to setup a posture prediction simulation with point
constraints anywhere on the body. An example of this
can be seen in Figure 5 with blue end-effector spheres
and white target spheres.

Figure 5. Predicted posture with end-effectors (blue spheres) placed
on the multiple locations on the digital human’s body, each given its
own target (white spheres).

SHARED MEMORY

Given the ability to specify any number of targets and
associated end-effectors, we now develop the ability to
communicate faster and simultaneously perform posture
prediction. That is, posture prediction operates in real
time as various points on the avatar are positioned.
Whereas currently available animation and surface
modeling tools (Maya, 3D Studio Max, etc.) have basic
inverse kinematics capabilities that essentially yield
random postures for a specified target point, SantosTM
incorporates what we call Advanced IK to predict
realistic human postures.

However, constantly opening/closing and reading/writing
of files (Figure 1) adds unnecessary overhead and
delays, so a more sophisticated communication method
was needed. Shared memory is a solution that allows
both processes to have access to the same memory
block of common variables. When one process changes
a variable value, the other process immediately has
access to the new value. This results in much faster
communication and synchronization between multiple
processes.

As mentioned previously and shown in Figure 1, the
following process is used for communication between
Virtools and the posture prediction code (the previous
methods that get improved through shared memory
implementation are colored in red):

1. Virtools opens files, writes information, and closes
the files

2. Posture prediction execution begins
3. Posture prediction opens files, reads information,

and closes the files
4. Posture prediction calculates optimal human posture

solution
5. Posture prediction opens files, writes the solution,

and closes the files
6. Virtools opens files, reads the solution, and closes

the files
7. Virtools applies the solution visually to the avatar

Shared memory replaces this slow and primitive method
of communication. Shared memory is achieved by
creating a shared memory DLL. A DLL stands for
dynamic-link library and can include programmed
subroutines, data, and resources that can be used by
multiple platforms and programming languages. In a
shared memory DLL, all of the variables that are shared
among multiple processes are defined, and then get and
set functions for each of these variables are also
defined. To have access to these variables, each
specific process needs to load the shared memory DLL
and use the get and set functions to either retrieve a
value or change it. A basic diagram of two processes
using a shared memory DLL can be seen in Figure 6.

Figure 6. Basic shared memory diagram with multiple processes able
to get and set common shared variables defined in the shard memory
DLL.

In order to use shared memory, the communication
sections of the posture prediction code need to be
changed. Before any communication occurs though, the
shared memory DLL needs to be loaded into the
program. Once it is loaded the code has access to all
the get and set functions, which in turn gives it access to
all the shared variables. The posture prediction code is
changed by replacing all the read statements with get-
variable function calls, and all the write statements are
replaced with set-variable function calls.

The Virtools interface was changed by removing all the
building blocks that write out the posture information. A
building block is a visual representation of a block of
code that achieves a specific function, which is used in
Virtools interface development. Once the write file
building blocks were removed, a new building block was
created. This new building block first loads the shared
memory DLL, and then sets all of the appropriate values
before posture prediction is executed. Once posture
prediction computes an optimal posture and the values
have been set back to the shared memory location,
Virtools can then access them and apply the results.
Overall, the new process when a user wants a new
posture predicted can be described as follows (the
improved methods are colored in red):

1. Virtools loads the shared memory DLL and sets all
posture values

2. Posture prediction execution begins
3. Posture prediction loads the shared memory DLL

and gets all the input values
4. Posture prediction calculates optimal human posture

solution
5. Posture prediction opens sets the solution in shared

memory
6. Virtools gets the solution
7. Virtools applies the solution visually to the avatar

The steps are now simplified, and each one does not
take as long as they previously did using file I/O.

One particular challenge that was overcome was the
implementation of shared memory DLLs with Fortran
code. Since the posture prediction code is written in
Fortran, it can only load DLLs that are in the same
directory as the actual executable. Since the shared
memory DLL may not be in that directory, a method
needed to be made to specify the path of the DLL.
Since the C++ language is capable of loading remote
DLLs, a C++ wrapper DLL was created. The posture
prediction code can load this local wrapper DLL, which
can then load the remote shared memory DLL. This
entire process can be seen in Figure 7.

Figure 7. Posture prediction shared memory process with SantosTM

While the C++ wrapper does add a little more overhead,
the shared memory communication process is still
significantly faster than file I/O. Averaging 100 trials for
each under the same conditions, the communication
speed with file I/O came out to be .024 seconds while
shared memory was .0041 seconds. This is 5.85 times
faster than the previous method of communication,
which is a valuable improvement that was needed in
order for the tool described in this paper to be possible.
Now, Instead of the entire posture prediction process
taking a split second from a user’s perspective, it now
appears to be instantaneous with the posture prediction
code and user interface synchronized.

COMBINING MULTIPLE END-EFFECTORS AND
SHARED MEMORY

With posture prediction running at this faster speed, it
meets the speed requirement to be called constantly in a
loop while Virtools is also constantly looping and
updating the avatar with the predicted posture. A user
can click and drag targets around just as fast as the
posture to touch that target is computed, so there
appears to be motion. Combining this with multiple end-
effectors posture prediction gives the user the ability to
click and drag any part of the body, but while
dynamically displaying realistically predicted postures.
This is a new and intuitive method to allow users to
setup or change posture prediction simulations.

Some changes needed to be made to both the flow of
logic in the posture prediction code as well as the
interface to achieve this new feature. Once a user clicks
a point somewhere on the avatar’s body (creating an
end-effector), both the posture prediction code and user
interface enter a mode where they are running at the
same time and continually communicating the input and
results with each other. This mode then stays on as the
mouse is down. Now as the mouse is dragged, the
target for that individual end-effector is updated to that
mouse point, which posture prediction uses as the target
input. The visualization of the joint posture for the avatar
is updated dynamically. As seen in Figure 8, the blue
sphere represents both the end-effector and the target
as it is dragged smoothly in one motion.

Figure 8. End-effector being applied to the right hand and then
dragged as postures are updated.

Since the posture prediction code has multiple end-
effectors capabilities, any part of the body can be
chosen as an end-effector and then dragged. As new
end-effectors are added, the previous end-effectors stay
constrained to their given target. Users can also easily
delete any end-effector or target, or update a current
value. Currently the interface is set up so that a left click
creates end-effectors, and a right click can drag any
current point already defined, or replace the closest end-
effector with the current click. Since it is still in early
stages, there are still many possibilities for further
development.

CONCLUSION

Throughout this paper a major evolution of the SantosTM
posture prediction code and user interface have been
described. This has resulted in a new intuitive method
for running posture prediction for digital humans. This
was accomplished through a new method for using any
number of user-specified end-effectors with optimization-
based posture prediction. In addition, a new
methodology for incorporating shared memory was
leveraged to provide a more efficient way for multiple
processes to communicate with each other. This
increased computational speed substantially.
Combining the multiple end-effectors capability with
shared memory communication results in a novel tool for
human posture analysis and product design. This
represents not only a practical and intuitive product but
also the significant advancement in the field of human
posture prediction.

Typically, posture analysis is conducted by having an
expert user laboriously position and orient and digital
mannequin. This is the case with many other human
modeling software packages since they do not have
realistic human postures that are computed. Positioning
a digital mannequin into a posture that looks realistic
may not only produce inaccurate results, but this can
take a significant amount of time as well. Engineers or
ergonomists are needed to analyze the resulting posture
and recommend design changes. The capabilities
presented in this paper promise to revolutionize this
process, and save time and money since a designer will
be able to interact with a human posture prediction tool
dynamically while being able to drag around any part of
the avatar’s body. Santos’sTM new posture-prediction
functionality provided a much needed alternative to
currently available inverse kinematics tools.

Future work for the posture prediction code will involve a
complete conversion to C++, which will thus eliminate
the need for a shared memory wrapper for
communication, and also increase the efficiency. In
addition, using shared memory as a faster method of
communication can be applied to other features of
human modeling software products as well, which will
increase the communication efficiency of a whole human
modeling software package. Since this was the first
iteration of this Advanced IK tool which was made to
work with an already existing code, future iterations with

code redesigns may prove to have more improvements
in structure and performance.

ACKNOWLEDGMENTS

This research was funded by the US Army TACOM
project: Digital Humans and Virtual Reality for Future
Combat Systems (FCS), and the Caterpillar project:
Digital Human Modeling and Simulation for Safety and
Serviceability.

REFERENCES

1. Abdel-Malek, K., Yang, J., Marler, T., Beck, S.,
Mathai, A., Zhou, X., Patrick, A., and Arora, J.
(2006), “Towards a New Generation of Virtual
Humans,” International Journal of Human Factors
Modeling and Simulation, 1 (1), 2-39.

2. Abdel-Malek, K., Yu, W., and Jaber, M., (2001),
“Realistic Posture Prediction,” 2001 SAE Digital
Human Modeling and Simulation.

3. Beck, D. J., and Chaffin, D. B. (1992), “An
Evaluation of Inverse Kinematics Models for Posture
Prediction”, Computer Applications in Ergonomics,
Occupational Safety and Health, Elsevier,
Amsterdam, The Netherlands, 329-336.

4. Chaffin, D. B. (2002), “On Simulating Human Reach
Motions for Ergonomic Analysis”, Human Factors
and Ergonomics in Manufacturing, 12, (3), 235-247.

5. Das, B., and Behara, D. N. (1998), “Three-
Dimensional Workspace for Industrial Workstations”,
Human Factors, 40, (4), 633-646.

6. Denavit, J. and Hartenberg, R.S., (1955), “A
kinematic notation for lower-pair mechanisms based
on matrices", Journal of Applied Mechanics, Vol. 77,
pp. 215-221.

7. Faraway, J. J. (1997), Regression Analysis for a
Functional Response”, Techometrics, 39, (3), 254-
262.

8. Faraway, J. J., Zhang, X. D., and Chaffin, D. B.
(1999), “Rectifying Postures Reconstructed from
Joint Angles to Meet Constraints”, Journal of
Biomechanics, 32, 733-736.

9. Farrell, K. and Marler, R.T., (2004), "Optimization-
Based Kinematic Models for Human Posture",
University of Iowa, Virtual Soldier Research
Program, Technical Report Number VSR-04.11.

10. Farrell, K., Marler, R.T., and Abdel-Malek, K., (2005)
“Modeling Dual-Arm Coordination for Posture: An
Optimization-Based Approach”, University of Iowa,
Virtual Soldier Research Program, SAE paper 2005-
01-2686.

11. Jung, E.S. and Choe, J., (1996), “Human reach
posture prediction based on psychophysical
discomfort”, International Journal of Industrial
Ergonomics, Vol. 18, pp. 173-179.

12. Jung, E.S., Kee, D., and Chung, M.K., (1995),
“Upper body reach posture prediction for ergonomic
evaluation models”, International Journal of
Industrial Ergonomics, Vol. 16, pp. 95-107.

13. Marler, R.T., Rahmatalla, S, Shanahan, M, and
Abdel-Malek, K., (2005) “A New Discomfort Function
for Optimization-Based Posture Prediction”,
University of Iowa, Virtual Soldier Research
Program, SAE paper 2005-01-2680.

14. Mi, Z., Yang, J., and Abdel-Malek, K., (2002), "Real-
Time Inverse Kinematics for Humans," Proceedings
of 2002 ASME Design Engineering Technical
Conferences, DETC2002/MECH-34239, September
29-October 2, Montreal, Canada.

15. Tolani, D., Goswami, A., and Badler, N., (2000),
“Real-Time Inverse Kinematics Techniques for
Anthropomorphic Limbs”, Graphical Models, Vol. 62,
No. 5, pp. 353-388.

16. Wang, X.G., (1999), “A behavior-based inverse
kinematics algorithm to predict arm prehension
postures for computer-aided ergonomic evaluation”,
Journal of Biomechanics, Vol. 32, pp. 453-460.

17. Wang, Shi-You, Guo, Fu-Shun, Shuo-Ben, Bi, and
Zang, Tian-Yi, (1999), “An improved inter-process
communication mechanism using shared memory”,
Mini-Micro Systems, v 20.

18. Yang, J., Marler, R.T., Kim, H., Arora, J., and Abdel-
Malek, K., (2004), “Multi-Objective Optimization for
Upper Body Posture Prediction,” 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization
Conference, Aug. 30-Sept. 1, 2004, Albany, New
York, USA.

19. Yang, J., Marler, R.T., Beck, S., Abdel-Malek, K, and
Kim, J., (2006) “Real-Time Optimal Reach-Posture
Prediction in a New Interactive Virtual Environment,”
Journal of Computer Science and Technology, Vol.
21, No. 2, 2006, pp. 189-198.

20. Yang, J., Kim, J., Abdel-Malek, K., Marler, T., Beck,
S., and Kopp, G., (2007) “A New Digital Human
Environment and Assessment of Vehicle Interior
Design,” Computer-Aided Design, Vol. 39, 2007,
548-558.

21. Zhang, X., and Chaffin, D. B. (1996), “Task Effects
on Three-Dimensional Dynamic Postures During
Seated Reaching Movements: An Analysis Method
and Illustration”, Proceedings of the 1996 40th
Annual Meeting of the Human Factors and
Ergonomics Society, Philadelphia, PA, Part 1, 1,
594-598.

