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ABSTRACT 

Collision avoidance in digital human modeling is critical 
for design and analysis, especially when there is 
interaction between the avatar and his/her environment.  
This paper describes a new algorithm for obstacle 
avoidance with optimization-based posture prediction.  
This new approach is motivated by a need for decreased 
computational time and increased fidelity for modeling 
and analysis of collision avoidance tasks.  Posture 
prediction is run in an iterative loop while conducting 
collision detection to dynamically update collision 
avoidance constraints.  It is shown that this approach is 
substantially faster than the basic method involving a 
fixed number of sphere-based avoidance constraints 
with a single optimization/posture-prediction run.  The 
method is demonstrated using an upper-body virtual 
human model in a cab setting. 

INTRODUCTION 

A key element in the development of human modeling 
capabilities is the interaction between the virtual human 
and his/her environment.  Although an independent 
virtual human (avatar) can help one better understand 
human behavior, enabling an avatar to interact with a 
virtual environment increases human-modeling 
capabilities significantly and opens the door to more 
human-centric product design.  A key element under the 
topic of virtual human-environment interaction is collision 
avoidance, which includes both obstacle avoidance (i.e. 
the avatar avoiding other geometry) and self avoidance 
(i.e. the avatar avoiding its self). 

One advantage to optimization based posture prediction 
(Yang et al, 2006; Marler et al, 2007; Marler et al, in 
press) is the relative ease with which collision avoidance 
can be incorporated.  Essentially, collision avoidance 
entails adding a set of constraints to the optimization 
problem.  However, the approach to forming and 
incorporating such constraints can significantly affect 
predictive accuracy and computational speed. 

Consequently, this paper presents a new algorithm for 
collision avoidance with optimization-based posture 
prediction.  This new approach increases computational 
time substantially and thus allows one to increase fidelity 

with which a virtual world is modeled.  With most 
computational models, increasing speed and fidelity tend 
to be conflicting objectives. 

A basic, preexisting collision avoidance approach 
provides the foundation for this work.  This basic 
approach involves representing the avatar and relevant 
geometry with spheres.  Spheres used to model the 
avatar are called body spheres, whereas spheres used 
to represent geometry are called obstacle spheres.  
Constraints are then incorporated in the posture-
prediction formulation such that no two spheres in the 
virtual environment can overlap.  Although functional, 
this approach becomes impractical and slow with more 
complex obstacles or larger numbers of obstacles. 

The new proposed algorithm for obstacle avoidance is a 
multi-run approach and involves cycling through multiple 
posture-prediction problems, noting relevant obstacles, 
and then considering only the associated spheres for 
avoidance constraints in the subsequent problems.  The 
hypothesis is that the increase in computational time 
from reducing the number of constraints will more than 
compensate for the increase resulting from having to 
solve multiple optimization problems.  Although this 
algorithm only applies to obstacle avoidance, not self 
avoidance, an increase in computational speed can 
allow for increased fidelity in the body spheres and thus 
improved performance with self avoidance.  Ultimately, a 
reduction in computational time could provide real-time 
posture prediction with relatively low sensitivity to the 
number of and complexity of obstacles. 

The primary intent of this work is algorithm development.  
This is considered a first step towards a robust validated 
tool for real-time posture prediction with collision 
avoidance.  As a tertiary goal, this work involves the use 
of and comparison of two different sphere-generating 
algorithms.  Given that any collision-avoidance approach 
in the context of optimization-base prediction likely 
involves representing geometry with spheres, the 
method by which spheres are generated becomes 
critical. 

This paper first discusses the basics of optimization-
based posture prediction.  Two sphere-generating 
algorithms are then summarized.  The proposed 



algorithm is then outlined in reference to the existing 
basic approach.  Finally, a series of example problems 
are presented and discussed.   

OPTIMIZATION-BASED POSTURE PREDICTION 

In this section, an overview of human optimization-based 
posture prediction is discussed.  This includes a brief 
description of the skeletal model, as well as the final 
optimization formulation. 

Simulating human posture depends largely on how the 
human skeleton is modeled.  One way to view a skeleton 
is as a kinematic system, or series of links with each pair 
of links connected by one or more revolute joints.  
Therefore, a complete human body can be modeled as 
several kinematic chains, formed by series of links and 
revolute joints, as shown in Figure 1. 

Figure 1: A Kinematic Chain of Joints 

 is a joint angle and represents the rotation of a single 
revolute joint.  There is one joint angle for each degree 
of freedom (DOF).   is the vector of 
joint angles in an n-DOF model and represents a specific 
posture.  Each skeletal joint is modeled using one, two, 
or three kinematic revolute joints.   is the 
position vector in Cartesian space that describes the 
location of the end-effector as a function of the joint 
angles, with respect to the global coordinate system.  
For a given set of joint angles q,  is determined 
using the Denavit-Hartenberg (DH)-method (Denavit and 
Hartenberg, 1955). 

Using the DH-method  is expressed in terms of a 
series of transformations  and is given by: 

  (1) 

where  is the position of the end-effector with respect 
to the nth frame and n is the number of DOFs.  Note that 
the rotational displacement changes the value of . 

With this study, a 35-DOF model for the human torso, 
right arm, left arm, and neck is used and is shown in 
Figure 2, where each cylinder represents a rotational 
DOF. 

 through  represent the torso.   through  
represent the right shoulder and clavicle.   through 

 represent the right arm.   through  represent 
the left arm.   through  represent the 5-DOF neck 
model.  The link lengths between each of the joints are 
variable and can be set based on anthropometric data, 
thus representing various population variations. 

Figure 2: Human Model 

OPTIMIZATION FORMULATION 

The posture of the above-described model is determined 
by solving the optimization problem formulated in this 
section.  The design variables for the problem are , 
measured in units of radians.  The vector q represents 
the consequent posture. 

The first constraint, called the distance constraint, 
requires the end-effector to contact a target point.  In 
addition, each joint angle is constrained to lie within 
predetermined limits.   represents the upper limit for 

, and  represents the lower limit.  These limits are 
derived from anthropometric data and ensure that the 
avatar does not assume an unrealistic posture. 

The basic benchmark performance measure represents 
joint displacement (Jung et al, 1994; Yu, 2001; Mi et al, 
2002).  This performance measure is proportional to the 
deviation from the neutral position (Smith et al, 2009), 
which is selected as a relatively comfortable posture, 
typically a standing position with arms at one’s sides.   
is the neutral position of a joint, and  represents the 
overall neutral posture.  Because some joints articulate 
more readily than others, a weight  is introduced to 
stress the relative stiffness of a joint.  Although these 
weights are typically based on trial-and-error, the 
consequent performance measure provides a baseline 
performance measure with consistently reasonable 
results and thus a foundation for new posture-prediction 
developments.  The final joint displacement is given as 
follows: 

  (2) 

The optimum posture for the system shown in Figure 2 is 
then determined by solving the following problem: 



 
Find:  (3) 

to minimize:  

subject to: 

 

 

where  is a small positive number that approximates 
zero.  (3) is solved using the software SNOPT (Gill et al, 
2002), which uses a sequential quadratic programming 
algorithm.  Analytical gradients are determined for the 
objective function and for all constraints.  Note that the 
absolute values of the performance measures are not 
significant. 

SPHERE FILLING ALGORITHMS 

The formulation in (3) can be altered to incorporate 
collision avoidance by restricting various items from 
touching each other.  This is done by adding constraints 
to the formulation.  The question is how to model such 
constraints mathematically.  Given that a gradient-based 
optimization method is used to solve (3), all objective 
functions and constraints should be continuous and 
differentiable.  Thus, spheres are chosen as primitives 
for representing the avatar and the geometry.  They lend 
themselves to simple and continuous equations that 
restrict the distance between objects based on eth 
sphere radii.  The shape and size of the avatar is 
generally constant, although anthropometry may vary.  
However, geometry in the virtual environment (other 
than eth avatar) can vary significantly in shape and size.  
Thus, the method by which geometry is represented with 
spheres is critical to the performance of any collision 
avoidance approach. 

In the Santos environment all imported geometry is 
internally represented by triangles as the basic building 
block.  Collectively, these triangles form a mesh for an 
object.  Using these triangles, however, in an 
optimization constraint presents a number of difficulties.  
Unlike spheres, which are represented by a point and a 
radius, a triangle is represented by an equation of a 
plane and three line equations.  This complicated 
representation makes calculating whether two triangles 
intersect much more computationally difficult and 
expensive than simply determining whether two spheres 
intersect. 

Any geometry in 3D space can be represented by a 
collection of spheres, and the methods and techniques 
for generating this approximation are numerous.  Two 
different techniques have been tested for use with 
posture prediction, and they are illustrated in the 
following subsections.  The first method uses spheres 
with equal radii and is called sphere shelling.  The 

second method uses spheres with unequal radii and is 
called the adaptive medial-axis approximation method. 

METHOD 1 – SPHERE SHELLING 

With this method, a given 3D mesh’s bounding box is 
filled with spheres.  A representation of the process is 
given in Figure 3.  The box is filled with spheres of a 
given radius line by line, column by column.  The green 
spheres represent spheres that contain at least one 
vertex (spheres intersecting with at least one triangle on 
the geometry).  Red spheres are empty, i.e., they do not 
contain any vertices.  This results in the geometry being 
‘shelled’, i.e., only the outside ‘skin’ of an object is 
approximated by spheres.  This algorithm continues until 
the entire bounding box of the object is filled with 
spheres. 

 

Figure 3: Sphere Shelling Procedure 

As illustrated in figure 4, the red spheres are then 
deleted, which results in the ‘shell’ of the given 3D 
object. 

 

Figure 4: Sphere Shelling Result 



METHOD 2 – ADAPTIVE MEDIAL-AXIS 
APPROXIMATION 

This method, although slightly slower than sphere 
shelling, provides two advantages.  First, it is a filling 
method, so it represents the complete geometry, not just 
the boundary.  Second, it is adaptive, which means the 
filling spheres are adjusted to optimally fill any geometric 
form.  The construction of the spheres is based on three-
dimensional Voronoi diagrams (Bradshaw et al, 2004).  
The algorithm is based on the Voronoi diagram 
proposed by Hubbard (1996).  A Voronoi diagram in a 
two-dimensional context involves a set of points , 
called Voronoi sites, given on a plane.  Each point  has 
a Voronoi cell  consisting of all points closer to  
than to any other point.  This concept is extended to the 
third dimension where a Voronoi cell would consist of all 
points closer to  in three-dimensional space.  A medial 
axis is defined as the set of centers of a set of maximally 
sized spheres filling an object.  The Voronoi points inside 
the object define the medial axis, and the spheres are 
formed based on the medial axis.  Then, the spheres are 
automatically merged, removed, and expanded to refine 
the results.  An example of spheres resulting from this 
method are illustrated in Figure 5. 

 

Figure 5: Sphere Filling Result 

Note that the medial axis approach is much more 
accurate than the shelling algorithm.  In addition, there is 
much less over approximation of the geometry.  The 
medial axis approach is slightly slower than shelling, but 
if all geometry is represented with spheres as it is 
imported into the virtual environment, and if the spheres 
are generated only once, then computational time for 
generating spheres is not necessarily a critical issue. 

 

 

COLLISION AVOIDANCE ALGORITHM 
DEVELOPMENT 

Given the algorithms for representing a virtual 
environment (or part of an environment) with spheres, 
the formulation in (3) can be extended to include 
collision avoidance (self avoidance and obstacle 
avoidance).  Extra constraints are added to the 
optimization formulation and prevent an avatar’s body 
spheres from intersecting other body spheres and 
obstacle spheres.  Body spheres are grouped based on 
their locations, and spheres in the same group are not 
constrained with other spheres in the same group.  For 
example, there is no constraint preventing a sphere in 
the torso and another sphere also in the torso from 
intersecting, as the joint limits alone will prevent this 
collision.  Obstacle spheres are represented by a global 
position and a radius, and body spheres are represented 
by a local position relative to a joint, and a radius.  Then, 
sphere-based constraints simply require that no two 
spheres intersect, and this condition is modeled by 
limiting the distance between sphere centers based on 
sphere radii.  Thus, the sphere avoidance constraints 
are similar to the end-effector-target constraints.  The 
final updated formulation is stated as follows: 

Find:   (4) 
 
to minimize:  
 
subject to: 

 
 

 
 

 
 

 
 

 
Although this formulation provides reasonable results, 
there is room for improvement with regards to 
computational speed.  With this basic approach, every 
body-sphere is constrained with every obstacle sphere in 
the environment.  This means that for  obstacle 
spheres and  body spheres, there will be  
constraints added to the optimization problem.  This can 
make it difficult to obtain real time results, especially 
when a relatively large number of spheres (and 
consequent number of constraints) is used to increase 
the fidelity with which the avatar and/or geometry is 
modeled/represented.  Consequently, only nine spheres 
are used to represent Santos’ upper-body, and no more 
than a few hundred spheres can be used to represent 
obstacles in the environment. 

The new method for obstacle avoidance reduces runtime 
by drastically reducing the number of sphere-to-sphere 
constraints that are included in the optimization problem.  
In general, the method uses a multi-run approach, 



whereby the optimization solver runs (the formulation in 
(4) is solved) multiple times, each time including 
additional necessary sphere-to-sphere constraints.  The 
method is summarized with the flowchart shown in 
Figure 6. 

 

Figure 6: Multi-Run Approach Flow Chart 

First, posture prediction is run with no collision-
avoidance constraints.  Then, using the resultant 
posture, body-to-obstacle collisions are identified.  For 
every colliding set of spheres a corresponding constraint 
is incorporated in the posture-prediction formulation for 
obstacle avoidance, and the problem is re-run with the 
new constraints.  Any new body-to-obstacle collisions 
are identified, and the process is repeated until there are 
no collisions.  Thus, the final optimization run includes 
the minimum necessary body-to-obstacle sphere 
constraints.  Note that the multiple runs of the 
optimization problem are completed in the background; 
the user only sees the final results (the final posture). 

The main benefit from this method arises from the fact 
that simply checking for sphere collisions is significantly 
faster than including all of the sphere pairs as 
constraints in the optimization problem.  Even though the 
optimizer is running multiple times, the significant 
reduction in the number of constraints allows us to 
predict realistic postures that avoid collisions in real-
time. 

An added benefit of this method is that the time 
improvement allows for increased fidelity of the avatar’s 
self avoidance spheres while still maintaining real-time 
results.  The number of spheres used to represent the 
upper-body has been increased from 9 to 16, as shown 
in Figure 7. 

 

Figure 7: Santos’ New Body Spheres 

RESULTS 

TEST CASE #1 

The first test case provides a basic example of the 
proposed algorithm.  Santos is placed in a seated 
posture inside a cab.  One end-effector is placed on his 
right index finger, and the corresponding target point is 
placed on the dashboard.  The purpose of this test case 
is to create a situation such that without collision 
avoidance, Santos’ arm intersects the steering wheel.  
The steering wheel is shelled with spheres, and the 
posture is predicted with both the basic collision 
avoidance approach and the new multi-run approach.  
To keep the two methods as comparable as possible, 
the updated body spheres are used for both methods 
(shown in Figure 7).  Since both the basic and new 
collision avoidance methods produce the same final 
posture, only one is shown.  The predicted posture with 
no collision avoidance is also shown for reference.  The 
predicted postures are shown in Figure 8.  As one can 
see, with collision avoidance enabled, Santos’ right arm 
no longer collides with the steering wheel.  The left arm 
is still colliding with the seat because the seat has not 
been filled with spheres. 

Table 1 shows numerical information about the problem 
formulations and results for test case #1.  The number of 
iterations for the basic method is always 1, but this 
varies for the multi-run approach based on the problem.  
In this context, an iteration is defined as one run/solution 
of the posture prediction; it does not refer to a 
computational optimization iteration.  The fourth row in 
Table 1 indicates the total number of body-obstacle 
sphere-pair constraints considered for the basic method, 



and the final number of sphere constraints that were 
considered for the multi-run approach.  Despite having to 
run two optimization iterations, the multi-run approach 
produced a solution much faster than the basic method.  
The multi-run approach only considered 0.86% of the 
total possible sphere constraints, and produced a result 
13.2 times faster than the basic method. 

 

Figure 8: Case #1 with no collision avoidance (left) and 
collision avoidance (right) 

 

Table 1: Test case #1 results 

  Basic 
Method 

Multi-Run 
Approach 

Total Obstacle Spheres 80 80 

Total Body Spheres 16 16 

Iterations of Optimizer 1 2 

Sphere constraints (final) 1280 11 

Total Runtime (seconds) 0.66 0.05 

 
TEST CASE #2 

The second test case involves a slightly larger 
optimization problem and addresses the issue of the left 
arm.  The additional objects that are shelled with 
spheres are shown in Figure 9.  Again, one end-effector 
is placed on his right index finger, and the corresponding 
target point is placed on the dashboard, such that 
without collision avoidance, Santos’ arm intersects the 
steering wheel.  The steering wheel, steering column, 
seat, arm rests, and various control knobs are shelled 
with spheres.  Posture is predicted with both the basic 
collision avoidance approach and the multi-run 
approach.  It can be seen that with collision avoidance 
enabled, Santos’ left arm no longer collides with the 
seat.  In this case, the left arm is not assigned an end-
effector and target point. 

 

Figure 9: Case #2 with no collision avoidance (left) and 
collision avoidance (right) 

Table 2 provides numerical output for this case.  The 
multi-run approach considers just 0.47% of the total 
possible sphere constraints, and it results in a solution 
301.5 times as fast as the basic method.  This test case 
demonstrates that the multi-run approach works well in 
situations with many filled objects and a large number of 
obstacle spheres.  When comparing this case to case 
#1, it can be determined that by increasing the number 
of obstacle spheres by a factor of 27.15, the computation 
time of the basic method increased by a factor of 118.8, 
while the multi-run computation time increased only by a 
factor of 5.2.  This indicates that the multi-run approach 
scales much better than the basic approach. 

 

Table 2: Test case #2 results 

  Basic 
Method 

Multi-Run 
Approach 

Total Obstacle Spheres 2172 2172 

Total Body Spheres 16 16 

Iterations of Optimizer 1 3 

Sphere constraints (final) 34752 163 

Total Runtime (seconds) 78.39 0.26 

 
TEST CASE #3 

The third test case involves complex geometry in the 
form of a torus knot shown in Figure 10.  One end-
effector is placed on the pointer finger of each hand.  
Corresponding target points are placed on the surface of 
a torus knot.  With this case, the adaptive medial axis 
sphere filling algorithm is used instead of the sphere 
shelling algorithm.  The torus knot is filled with 64 
spheres.  Without collision avoidance, Santos’ arms 
collide with geometry, but all geometry is avoided when 
collision avoidance is used. 



 

Figure 10: Case #3 with no collision avoidance (left) and 
collision avoidance (right) 

The multi-run approach eventually considered 1.56% of 
the total possible sphere constraints, and as shown in 
Table 3, it found a solution 42.7 times faster than the 
basic method. 

 

Table 3: Test case #3 results 
  Basic 

Method 
Multi-Run 
Approach 

Total Obstacle Spheres 64 64 

Total Body Spheres 16 16 

Iterations of Optimizer 1 3 

Sphere constraints (final) 1024 16 

Total Runtime (seconds) 6.41 0.15 

 
CONCLUSION 

This paper presents a new method for obstacle 
avoidance with optimization-based posture prediction.  
We have shown a substantial increase in computational 
speed with both theoretical and practical examples.  The 
initial hypothesis, that a multi-run approach could 
increase speed despite the necessity for solving multiple 
optimization problems, was proven true.  The new 
approach greatly reduces the number of sphere-to-
sphere constraints that are active during the optimization 
process.  The consequent increase in speed has allowed 
for an increase in fidelity with regards to modeling a 
virtual environment. 

Concurrent with the development of a new obstacle-
avoidance algorithm, we have compared two methods 
for generating spheres.  Although sphere filling takes 
longer, the results are much more accurate than that of 
sphere shelling, and once spheres have been generated 
for a particular object, they do not need to be generated 
again, even if the object’s orientation or direction is 
changed.  The spheres essentially represent a meta-
model of the human model and virtual environment, so 
their use is critical. 

An ancillary improvement to our collision avoidance 
software is the improvement of body-sphere fidelity.  
Because the multi-run approach greatly increased the 
speed of collision avoidance posture prediction 
problems, the number of spheres used to represent the 
body of Santos can be increased without significantly 
reducing performance. 

All of these improvements lead to a collision avoidance 
method that is fast enough to be used in real-time and 
biomechanically accurate enough to assist in ergonomic 
analysis of product design and workplace design.  Due 
to the nature of the multi-run approach, increasing the 
number of spheres in the environment does not 
necessarily increase the run-time.  This is a necessary 
development to allow collision avoidance to work 
automatically in large environments without requiring the 
user to specify which specific objects Santos should 
avoid. 

Future work includes the use of sphere filling methods to 
generate spheres for Santos’ body and skin.  This would 
greatly increase the precision of obstacle avoidance and 
self avoidance.  To further develop the obstacle 
avoidance capabilities of Santos, the predicted postures 
must be validated.  To be sure, the presented results are 
evaluated subjectively, but full experimental validation is 
still needed. 
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