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Abstract Human posture prediction is a key factor for the design and evaluation of workspaces, in a virtual environment
using virtual humans. This work presents a new interface and virtual environment for the direct human optimized posture
prediction (D-HOPP) approach to predicting realistic reach postures of digital humans, where reach postures entail the
use of the torso, arms, and neck. D-HOPP is based on the contention where depending on what type of task is being
completed, and human posture is governed by different human performance measures. A human performance measure is a
physics-based metric, such as energy or discomfort, and serves as an objective function in an optimization formulation. The
problem is formulated as a single-objective optimization (SOO) problem with a single performance measure and as multi-
objective-optimization (MOO) problem with multiple combined performance measures. We use joint displacement, change
in potential energy, and musculoskeletal discomfort as performance measures. D-HOPP is equipped with an extensive yet

intuitive user-interface, and the results are presented in an interactive virtual environment.

Keywords
1 Introduction

A virtual human model provides an efficient tool for
upstream manufacturing and design. Use of such a tool
can reduce the required number of design iterations,
which can save time and money. Of the many tech-
niques for ergonomic analysis, reach analysis has become
one of the most important applications for virtual hu-
mans. In addition, posture analysis is of vital interest to
biomechanical engineers, who strive to understand joints
and extremities of the musculoskeletal system. However,
even the most advanced computer-aided design tool is
ineffective without an intuitive easy-to-use environment
with which the user interacts. Thus, in this paper, we
present a new interface and virtual environment for our
direct human optimized posture prediction (D-HOPP)
approach to human posture prediction. The D-HOPP
approach provides a substantial amount of predictive
autonomy, enabling one to simulate infinitely many sce-
narios, rather than depend on prerecorded data. It also
provides a platform with which one can study which
physics-based metrics govern posture for different tasks.
The interface for D-HOPP has been developed such that
it is intuitively easy to use. In addition, as much as pos-
sible, the user should be able to focus on the virtual
human, its interaction with the environment, and the
task at hand, rather than having to focus on the inter-
face. We have taken this goal into consideration. The
environment, where the virtual human essentially lives,
should be realistic and convincing, with the ultimate
goal of allowing the user to actually interact with the
virtual human.

reach posture prediction, MOO, human modeling and simulation, virtual environment

Although there has been a substantial amount of
work completed with human posture and motion pre-
diction, either the human models are too simple, or the
predictive methods do not function in real time. Gener-
ally, there are two main approaches to predicting reach
posture. The first approach is empirical-statistical mod-
eling and is a more traditional approach. It uses an-
thropometrical data collected from experiments involv-
ing human subjects!’?/. These data are then analyzed
statistically to form a predictive model of posture, e.g., a
regression model. Such models have been implemented
in various simulation software systems[®>—6!.

The second approach to posture prediction is inverse
kinematics. There are two methods for inverse kinemat-
ics. One is the Moore-Penrose pseudo-inverse method
as predictive tools to yield a posture that has not been
observed but that has been estimated to be a natural
posture for a task!” 13, However, this pseudo-inverse
method is limited to relatively simple models with few
degrees of freedom and computational intensity. The
other is the optimization-based method which was orig-
inally used to predict robot’s trajectory motion where
given the end-effector position of the robot the goal is
to determine the joint angles. For each point on the
path on which the end-effector should follow is the tar-
get point, the user can determine robot’s configuration.
[14, 15] present a multi-objective optimization (MOO)
solution to the problem of moving a robot manipula-
tor with objectives of minimum traveling time and me-
chanical energy of the actuators, considering dynamics
and collision avoidance of moving obstacles. Saramago
and Ceccarelli'® propose a similar MOO approach with
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payload constraints. [17] proposes a single-objective op-
timization (SOO) method with load or torque as inde-
pendent objectives, and an MOO method that combines
the objectives. However, the maximum number of de-
grees of freedom for robots is six.

Work with motion prediction is related to posture
prediction. However, much of the focus for motion pre-
diction has been applied to robotics, and little work has
been conducted with the development of objective func-
tions that are tailored to human posture. [19-21] study
SOO-based human posture prediction using genetic al-
gorithms, and [22] extends this work to real-time sim-
ulation. [23] develops a discomfort objective function.
[24-27] extend the single objective problem to multi-
objective optimization problem.

The second component of this work, in addition to
real-time posture prediction, is the development of an
interface and a virtual environment with all of the as-
pects that a user interacts with. The virtual environ-
ment includes the interface, the visual appearance of
the surroundings for the virtual human, etc. Such vir-
tual environments offer people the ability to carry out
actions that may not be possible or safe in a real en-
vironment. [28] provides a complete survey of virtual
environment research including displays for presenting
information to the user’s visual, auditory, and haptic
senses; sensors and other technologies for transferring
information from the user to the computer; software;
human factors; and applications. However, in current
virtual environments, there is no highly realistic human
model that actual humans can interact with.

An intuitive interface is the bridge connecting the
users and the software. A better interface design is ben-
efit to the users to learn the software. [29] develops an
interactive interface for directing virtual humans. All
commercial software such as JackY, Pro/Engineer®,
Safework®, etc. has their user-friendly interfaces.
Therefore, for virtual human Santos™ it is necessary
for the users to use this virtual human intuitively and
friendly. We use traditional tools such as sliders, on/off
buttons, and clicks, etc. to build a user-friendly con-
troller.

[30, 31] develop a networked virtual environment in
which users can interact. The COVEN project/®?! stud-
ies collaborative virtual environments in depth, where
multiple users handle multiple tasks simultaneously. [33]
develops virtual presenters, virtual guides, and virtual
actors in a networked virtual environment. [34] proposes
a new collaborative environment, in which a human-
shaped virtual agent communicates with real humans.
However, there exists a problem the workload for the
construction is too large for the practical use. There-
fore, the system for simulating the collaborative envi-
ronment is divided into several subsystems according to
its function, and for each subsystem a new construc-
tion method to reduce the construction workload has
been developed individually. In this paper we present
an interactive virtual environment and the virtual hu-
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man lines in this environment and the users use them
as design tools.

2 Digital Human Modeling

Using the Denavit-Hartenberg (DH) method!®°], an
upper-body digital human model, including the spine,
neck, shoulder, and arms, has been developed!'8:19:36:37]
The DH-method characterizes the joints of a mecha-
nism, such that a position vector describing the location
of any given point, which is based on all of the joint dis-
placements, can be determined. In this study, we use
the DH-method to translate from a series of joint an-
gles to the Cartesian coordinates of an end-effector, in
a multi-segmental chain (see Fig.1) that leads from the
waist to an upper extremity. Local coordinate systems
are systematically embedded at each segment (i.e., link).
In Fig.1, ¢; are called generalized coordinates and rep-
resent the rotational displacements of the joints. Thus,
g = [ ... )T € R" is the vector of n-generalized
coordinates in an n-DOF model. x(q) is the position
vector that describes the location of the end-effector
(defined as any point on the human model for which a
position in Cartesian space is determined) as a function
of the generalized coordinates.

Target point (end-effector)

Z0

Global coordinate system

Fig.1. General kinematic model.

The complete human model is shown in Fig.2. ¢
through ¢2 represent the degrees of freedom for the
spine. gi3 through g¢o1 refer to the left arm, go2 through
q3o refer to the right arm. Although not shown in the
figure, g3; through g¢s5 represent the neck. Each joint
is represented by one or more DOF's. For instance, the
shoulder has five DOFs, i.e., five rotational joints. The
position vector function ®(q) (shown in Fig.1), gener-
ated by a point of interest and calculated as a multipli-
cation of rotation matrices jflR]- and position vectors
i=lp.. is expressed by

z(q) n__i-l i1
@)= |vl0) =S [II7R] e
z(q i=1 j=1

where both “~!'p, and /="' R; are defined using the DH
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method such that

cosf; —cosa;sinf; sino;sind;
i“l1R. = | sinf; cosa;cosf; —sina;cosb;
0 sin o cos

(i-Dp, = [a;cosq; a;sing; d;]T

(2)
where 6; is the joint angle from @; ; axis to the x; axis,
d; is the shortest distance between x;_; and x; axes, a;
is the offset distance between z; and z;_; axes, and «;

is the offset angle from z;_; and z; axes shown in Fig.3.

Global XYZ

.
Y ~
L] I

Fig.2. Kinematic modeling of digital humans.

Joint i+1

Xi

Fig.3. Joint coordinate system convention and its parameters.

3 Optimization-Based Approach

The posture for the above-described human model
is simulated using D-HOPP, a new optimization-based
approach discussed in [38, 39]. With this approach, the
joint angles, which essentially define a posture, provide
the design variables that are determined by solving a sin-
gle optimization problem. We consider the upper body,
so there are 35 design variables, representing the 35 de-
grees of freedom (DOFs) for the torso, neck, left arm,
and right arm, but not including the hands and eyeballs.

There are two primary types of constraints. First,
the end-effectors are constrained to contact a specified
target point in Cartesian space, and the consequent con-
straints are called distance constraints. With the exam-
ples in this paper, the end-effectors are the tips of the
index fingers. However, the user can specify an end-
effector anywhere and can associate it with any local
coordinate system. In addition, the end-effectors can be
restrained to a line or a plane as well as a point. The
second set of constraints represents joint-angle limits,
which are dictated by anthropometric data.

The objective function(s) for the optimization prob-
lem are human performance measures, which represent
physically significant quantities, such as joint displace-
ment, potential energy, or discomfort. A fundamental
premise behind D-HOPP is that different human per-
formance measures govern posture depending on what
type of task is being completed. Of course, in many
instances, posture may not be governed by just one per-
formance measure; multiple measures may need to be
combined using multi-objective optimization. Various
performance measures used with this work are described
briefly as follows.

3.1 Performance Measures

The first performance measure (objective function)
is called joint displacement and represents a baseline for
developmental comparison20-21:40] This performance
measure represents the joint displacement when a given
joint is displaced from its neutral position, which is a
generally comfortable position, and in this case it is de-
fined as the posture with one’s arms at one’s sides. With
g representing the neutral position, the displacement
from the neutral position is then given by |¢; — ¢7|,
which is modeled as (g; — ¢¥)? in order to avoid nu-
merical difficulties. Scalar weights are used to model
approximately joints that are articulated more readily
than others. Thus, the total joint displacement of all
joints is then characterized by the following function:

n
fJoint-displacement (Q) = Z wi(qi - qZJV)Q (3)
=1

where w; is a weight assigned to each joint. The weights
are defined in Table 1.
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Table 1. Joint Weights for Joint-Displacement
Joint variable Weight Comments
91,94, 97,910 100 Used with both positive and
negative values of ¢; — qfv
q2,95,,98,911 100 When ¢; —gN >0
1000 When ¢; —g;* <0
93,96, 99,912 5 Used with both positive and
negative values of ¢; — qlN
q13, 922 75 Used with both positive and
negative values of ¢; — qlN
914,915, 916 1 Used with both positive and
423,924, 925 negative values of ¢; — q¥
q18, 419, 920, 921
927,928,929, 430
q35
q17,926 50 When ¢; — qlN >0
1 When ¢; — q{v <0
q31,434 100 Used with both positive and
negative values of ¢; — qu
q32 50 When ¢; — qu <0

In an effort to use weights that have a more phys-
ically significant meaning, [24, 26] develop the sec-
ond performance measure, fgnergy, Which represents
the change in potential-energy (called delta-potential-
energy) and uses weights that are based on the mass of
different segments of the body.

With this performance measure, the primary seg-
ments of the upper body are represented with six
lumped masses: three for the lower, middle, and upper
torso; one for the upper arm; one for the forearm; and
one for the hand. Based on the definition of potential en-
ergy, the heights of the masses provide the components
of the human performance measure. Then, mathemat-
ically, the weight (force of gravity) of a body segment
provides a multiplier for movement of that segment in
the vertical direction. The height of each segment is
a function of the joint angles, so the weights (gravita-
tional forces) of the lumped masses essentially replace
the scalar multipliers w; used in the joint displacement
function. In order to avoid having the virtual human
constantly bend over and thus minimize potential en-
ergy, we actually minimize the change in potential en-
ergy. This means that each body segment essentially
has a different datum, where the potential is assumed
to be zero.

The final objective function is given as follows, with
reference to Fig.4:

fEnergy(Q) = Z(Pz - PiI)Z = Z(mig)Z(Ahi)2 (4)
i=1 i=1
P! = m;gT °A]... “"1Alr, is the initial potential

energy, defined at the neutral position, and P, =
mig’T CA; =1 A;r; is the final potential energy.
k =9 is the number of lumped masses for the 35 DOF
model. In contrast to joint displacement, (m;g)? serve
as weighting factors for (Ah;)2.

The third performance measure is musculoskeletal
discomfort fpiscomfort, and is developed by [23]. As
with joint displacement and delta-potential-energy, the
avatar again tends to gravitate towards the neutral posi-
tion. However, this function incorporates three facets of
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musculoskeletal discomfort: 1) the tendency to move to-
wards a generally comfortable position, 2) the tendency
to avoid postures with which joint angles are pushed to
their limits, and 3) the idea that people strive to reach
or contact a point using one set of body parts at a time.
With regards to component 2), the avoidance of joint
limits does not apply to joints where ligaments and/or
tendons are not stretched, as with the elbow and clav-
icle. With regards to component 3), in terms of upper
body motion, one first tries to reach a point using one’s
arm. If that is unsuccessful, then one bends the torso.
Finally, if necessary, the clavicle is extended. The intent
in developing this performance measure is not to quan-
tify discomfort but to model components that are pro-
portional to discomfort. Consequently, only its relative
values (from one posture to another), not its absolute
values, are significant.

Local coordinate

system-i

Zero potential
energy plane

]

Fig.4. Illustration of the potential energy of the forearm.

The final function is given as follows:

DOF
fDiscomfort (CI) = Z [’YI(Aq'ZLOTm) + QU’L + QL’L] (5)
i=1
4% —q
where Ag™°™™ = ﬁ QU and QL are specially de-

signed penalty functions that incorporate the discomfort
associated with joint angles that approach joint limits.
They are defined as follows:

QU = (05sin (W +1.571) + 1)100 .

. (5.0(¢i — qf)
QL = (05 sin <qU7L

+ 1.571) + 1)100 o

QU is zero until a joint angle is in the upper 5% of its
range, and QL is zero until a joint angle is within the
lower 5% of its range. +; represent weights, but these
weights are not used in the same way where weights for
joint displacement are. Instead, as [23] explains, these
are used to model the tendency to move different sets
of body parts sequentially. The specific values for these
weights are irrelevant; the weights simply need to have
significantly different orders of magnitude. The weights
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for the arms are equal to 1. The weights for the spine
and neck DOFs are all of 1 x 10*. The weights for the
clavicle DOF's are of 1 x 108.

3.2 Optimization Formulation

Given the design variables, constraints, and objective
functions discussed above, the final optimization prob-
lem is formulated as follows:

Find: g € RPOF
To minimize: F(q) = fJoint—displacementa fDiscomforta

or fEnergy
||a:(q) end-effector __ wtarget-point” < € (8)

i=1,2,...,DOF

Subject to:
af <qi<qf,

where x(g) ¢ efector is the position of the end-effector

in Cartesian space, @!®9¢tPoint ig the position of the
target point, and ¢ is a small positive number approxi-
mating zero. ¢F and g represent the lower and upper
limits for a joint angle, respectively.

(8) can be treated as a single-objective problem with
which each of the three objective functions are mini-
mized independently. However, posture may be gov-
erned by more than one performance measure, in which
case MOO is used. There are many methods for aggre-
gating multiple objectives and articulating preferences
as to which objectives are more important!*!). However,
the objective of this work is to demonstrate our pos-
ture prediction approach and capabilities. Therefore, in
terms of MOO methods, we use a global criterion, shown
as follows:

F(q) = [(f]oint—displacement)2 + (fDiscomfort)2

1/2
+ (fEnergy)z] : (9)
Before using (9), the objective functions are normal-
ized such that they all have similar ranges of values.
[24] demonstrates additional MOO methods for posture
prediction.

4 Posture Prediction Results

In this section, the formulation in (8) is solved us-
ing SNOPT softwarel*?l. Results are shown for SOO,
where each performance measure is minimized inde-
pendently, and for MOO where (9) is used. For this
study, Santos™ is required to contact the targets shown
in Fig.5. Depending on which performance measure
is used, the D-HOPP problem takes between approxi-
mately 0.1 and 0.5 seconds to run, thus yielding real-
time results.

Results using joint displacement, discomfort, and en-
ergy are shown in Figs. 6, 7 and 8, respectively.

Fig.5. Target points.

Clearly, different human performance measures re-
sult in different postures. Generally, the discomfort
function provides the most realistic results. It differs
from joint displacement, primarily because it incorpo-
rates the tendency to move arms before moving the
torso, as well as the tendency to avoid postures where
joint angles are at limits inducing stretching in ligaments
and/or tendons.

5 Interface and Virtual Reality Simulation

Research on virtual humans produces various capa-
bilities for Santos™. It is necessary to integrate all
capabilities in one package, for real humans to interact
with the virtual human, and friendly use these capabili-
ties of Santos™ in design. In this section we discuss
Santos™ interface and the virtual environment that
Santos™ lives.

5.1 Interface for Santos™

Despite our advancements with posture prediction, it
is necessary to provide not just various capabilities but
useable tools as well. Consequently, significant effort
has gone into developing a system of interfaces for vari-
ous capabilities. In developing the interface, we pursue
two objectives. First, the interface must be intuitively
easy to use, and it must be well organized. Secondly,
the interface must allow for the separation of the tech-
nical executables that govern the various capabilities,
from the virtual environment. In this context, the vir-
tual environment is the software that is used to visualize
Santos™,

Using delta-potential-energy appears to yield partic-
ularly unrealistic results. This suggests that energy does
not dictate posture independently, which is a counter-
intuitive result. However, as determined by [23, 26],
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energy can play a significant role in posture prediction
when combined with other performance measures using
MOO. The MOO results when (9) is used are shown in
Fig.9.

Fig.6. Joint displacement results. Fig.7. Discomfort results.

Fig.9. Posture prediction using
MOO.

Fig.8. Energy results.

The interface we have developed currently houses
six areas of functionality: posture prediction, inverse
kinematics, joint modifications, link-length (skeletal di-
mensions) modifications, workspace evaluation, and dy-
namic motion prediction. Here we discuss the interface
for posture prediction as well as other related interfaces.

Fig.10 shows the posture prediction interface. This
interface includes several parts: which hand for the pos-
ture prediction; cost functions; resetting to the neutral
posture; the command to run posture prediction; and
final predicted cost function values. In the hand selec-
tion part, the user can choose left hand, or right hand,

J. Comput. Sci. & Technol., Mar. 2006, Vol.21, No.2

or both hands. In the cost function selection part, the
user can use the sliders to adjust the weights for the
cost functions and the weights are shown bellow the
slider bars. The user can also directly input the weights
in the weight spaces. The weights satisfy w; < 1 and
>;wi = 1. If the weight value is “0”, that means
this cost function does not contribute to the final object
function for the optimization problem. The user can also
choose “Hold” to keep that weight value of cost function
unchanged. In the command to run posture prediction,
the user can simply click “Apply Settings” and a hor-
izontal slider will show the status of running. There
are three buttons “Back”, “Play/Pause” and “End” to
animate the posture result. The user can use “Show
Posture Data” button to view the output data of the
posture prediction. The absolute values of cost func-
tions are not significant, however, the relative values
are important to evaluate the human performance mea-
sures. Therefore we show the cost function percent in
this interface, which means the percent of current cost
function value over the maximum value for that cost
function.

SEr|
Posture |IK | Joints | Links | Workspace | Dynamic Motion |
- -

C Boh Bt Discomiot pigiorsy ey Vison

I

@ Let

C Right
Options.

I Non Ciical Motion

Reset

Posture Setup. @ off
- € Restatt

e O e
) | Bl T P Pl R

Change Grasp

Fig.10. Posture prediction interface.

Fig.11 shows the inverse kinematics interface. This
interface includes types of IK that the user can choose
standard IK and advanced IK, manipulation of standard
IK, advanced IK segment selection which the user can
choose left arm, right arm, both arms, left leg, right
leg, both legs, or all of them, and cost function percent.
We have developed two versions of IK: standard IK and
advanced IKP?. With standard IK, the user is able
to select hot points on Santos™ and then place them
wherever necessary. The complete avatar then moves ac-
cordingly, in real time. With advanced IK, we capitalize
on posture prediction capabilities to yield an exciting
new tool. As the user moves the hot points, the con-
sequent posture is automatically predicted/optimized.
That is, a version of the posture prediction algorithm is
run every frame using the hot points as target points.
This version of posture prediction currently has been
optimized for speed, and non-critical features have been
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omitted. The algorithm is able to run approximately 20
times per second. This alleviates the need for a user to
predict realistic postures as he/she positions the avatar;
realistic postures are actually predicted automatically.
Both standard IK and advanced IK include the legs.

Poste 1K | Jaints | Links | Workspace | Dynamic Motion |

Type of IK - Advanced K Segment
’V © Standard K @ Advaned K > il
€ BothAms

 Standad K € Leitleg

b I WwR | | | Rightleg

¥ Show Handes K5 Joint > %"""“’“‘

o2 Joint > IK

Evaliale Postue | Opinie Postue |
Save Frame
)
Time [s}0
Show Aninaiin_| Reset rimation|

Fig.11. Inverse kinematics interface.

Postue | Ik Joints | Links | Workspace | Dynamic Motion |

Sekect 3 Regon

Right Elbow
Resst Posture

Save Curent Joit Lints
Rleset Defauk Limits (This Jo]
Rleset Defau Limits (Al Jonts)

Flex
Fshow EXCVCo

ey e e

Disconfot 2% O
Potential Energy: 1% 0

Efot 2% O
Displacement: 66%

Fig.12. Joint limits interface.

Figs. 12 and 13 show the joint limits and link lengths
interface. Limits on the rotation of the joints can be
modified either to represent actual human data or to
model restrictions such as biomechanic deficiencies, in-
juries, or disabilities. The link lengths, which represent
the various skeletal components, can be altered just as
joint limits can. In this way, the size and shape of an
avatar can be tuned as necessary. The joint limit in-
terface includes selection a region of the body, selection
joint by click the red square on the body, sliders to ad-
just the joint limits in local z, y, and z directions al-
though each joint has a default limit, and cost function
percent. After the user adjust the joint limits and save
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them, they can go back to posture prediction to pre-
dict posture under the new joint limits. Therefore the
cost function percent will show the bar graph. The link
length interface is similar to the joint limit one shown
in Fig.13.
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Fig.14. Workspace zone differentiation interface.

As a final example of functionality that has grown
out of our approach to posture prediction, we have
extended the optimization-based posture prediction to
zone differentiation, where one can distinguish zones
within the envelope where the various performance mea-
sures take on different ranges. In this way, one can
determine not only which items Santos™ can touch
but also which items can be handled most comfortably,
with the least amount of energy expenditure, with the
least amount of effort, etc. Fig.14 shows the workspace
zone differentiation interface. This interface includes
workspace data input and output, cross section planes
to cut the workspace, and display color selection. Cur-
rently, the zone differentiation code runs off-line and we
load the results and show the zone differentiation re-
sults. The ultimate goal will be the real-time capability
with which the user can choose the body segment for
the workspace, cost function, output resolution.

5.2 Interactive Virtual Environment

Given the advanced capabilities discussed above as
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well as interfaces for using these capabilities, the ulti-
mate goal is to have users actually interact directly with
Santos™ in an immersive virtual environment. Such an
environment for hosting Santos™ provides an extra ad-
vantage in the design and evaluation process. For this
purpose, a 6-wall virtual reality environment, called the
Portal, has been built at The University of lowa. The
Portal is a room with a rear-projection (using CRT pro-
jectors) screen for each wall shown in Figs. 15 and 16.
Six individual computers are connected using a local
area network (LAN), and each computer’s graphics card
is gen-locked and frame-locked to the other computer
such that the projections from all of the computers are
synchronized. One computer is designated as the Lead
and is used to issue a synchronization signal to the other
five computers.

Users have full flexibility in interacting with the Por-
tal, whether by using virtual gloves and sensors, a hand-
held controller, or a simple mouse. Figs. 17 and 18

illustrate potential interactivity between the user and
Santos

T in a virtual environment.

Fig.15. Portal. Fig.16. Santos™ Living in the

Portal.

Fig.17. User and digital human in VR environment.

Users can test maintainability and serviceability of
vehicles using this virtual environment and interact with
Santos™ to evaluate the design. One example is that
users can directly test the reachability and space of ser-
vice areas by a hand-held controller to manipulate the
vehicles in this virtual environment.
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Fig.18. User interaction within the digital human environment.

6 Conclusions

In this paper, a general and robust mathematical
formulation for predicting human posture has been pro-
posed and demonstrated using a variety of human per-
formance measures. The modeling method is not re-
stricted to any specific number of DOFs. We have de-
veloped six different interfaces for Santos™, and with
these interfaces, users can easily interact with Santos™
while focusing on analysis and design issues. Finally,
an interactive digital-human virtual environment sys-
tem has been presented, with which one can visualize
simulation results and interact with Santos™.

The results obtained with D-HOPP are intended to
demonstrate basic real-time capabilities. However, with
D-HOPP, incorporating additional capabilities is sim-
ply a matter of introducing new constraints and/or ob-
jective functions. For instance, we are able to dictate
the orientation of different parts of the avatar, incorpo-
rate self-avoidance allowing the avatar to acknowledge
his/her body, and have the user specify any end-effector
whether it is actually located on the body or not. In
addition, the user can restrict various end-effectors to a
specified point, bounded line, or bounded plane. Finally,
D-HOPP has been developed such that anthropometric
data concerning skeletal structure and joint limits are
easily altered.

In coupling interactive capabilities with advanced
posture prediction capabilities, the ultimate goal is to
have Santos™ act as a design companion. The work
discussed in this paper is geared towards having an ac-
tual design engineer or analyst not only use the pro-
posed capabilities as a tool but also actually work with
Santos™.
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