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ABSTRACT 

As the need for more advanced human modeling tools has 
grown, so has the focus on research and development 
with posture-prediction capabilities for the design and 
analysis of products, and for the study of human behavior.  
Virtual humans have grown from digital mannequins with 
limited fidelity, to realistic avatars with predictive 
capabilities.  Now, one of the frontiers with posture 
prediction is the incorporation of external loads and joint 
torques.  Although advancements have been made with 
dynamic motion prediction, relatively little work has been 
conducted with external load-based posture prediction.  
Drawing on past success with optimization-based 
kinematic posture prediction implemented with the virtual 
human SantosTM, we present a new method for 
considering external loads.  A pilot study is conducted 
whereby equations for static equilibrium are incorporated 
in the optimization formulation.  Consequently, torque (as 
well as joint angles) is determined for each degree of 
freedom, and is incorporated in human performance 
measures that serve as objective functions in the 
optimization formulation.  The intent is to test the feasibility 
of extending the formulation for kinematic posture 
prediction.  Different external loads are applied to the right 
and left hands respectively, while the same target points 
are provided for these different lead cases on both hands.  
The results for the previous work (kinematic formulation) 
and the new formulation are compared.  The predicted 
postures are evaluated quantitatively in terms of numerical 

output, and subjectively in terms of visible postures.  In 
general, the pilot study was successful; the predicted 
postures were reasonable.  Including torque provided 
more realistic predicted postures and sets the stage for 
new discomfort models as well as consideration of 
reaction forces. 

INTRODUCTION 

Digital human models (DHMs) provide efficient tools for 
product and process design, and human analysis.  Such 
tools allow one to assess human-product interaction in a 
virtual environment in order to reduce design-cycle time 
and cost while increasing safety.  As DHM technologies 
advance, potential applications expand to areas such as 
military, medicine, sports, etc.  With many applications, 
one of the most essential capabilities is fast and accurate 
posture prediction and analysis.  And, a critical component 
of human posture prediction is the incorporation of joint 
torques with applied loads.  However, there has been 
minimal work with actually considering external loads in 
computational predictions of human posture.  Thus, the 
primary objectives of this paper are 1) to test the feasibility 
of incorporating applied loads in optimization-based 
posture prediction, and 2) to test basic toque-based 
human performance measures that provide the objective 
functions for optimization-based posture prediction.  This 
work is intended as a pilot study for further development of 
posture prediction capabilities. 



 

Literature review 

With regards to methods for predicting posture, there are 
two main approaches: data-based approaches and 
analytical inverse kinematics (IK) approaches.  With data-
based approaches, one uses prerecorded motion data, 
anthropometric data, and functional regression models 
(Beck and Chaffin, 1992; Zhang and Chaffin, 1996; 
Farraway, 1997; Chaffin et al, 1999; Chaffin, 2002).  This 
approach tends to be resource intensive and can be 
limited by the database being used. 

Analytical IK approaches predict posture by using 
analytical methods to simulate human motion.  However, 
as the number of degrees of freedom (DOFs) increases, 
traditional analytical methods become intractable.  In such 
cases, optimization-based methods become more 
prudent. 

Zhao and Badler (Zhao et al, 1994) provide one of the 
earliest approaches that directly incorporate optimization 
for posture prediction.  A gradient-based unconstrained 
optimization routine is used to minimize the weighted sum 
of components that model various factors, such as the 
position of the end-effector (a specified point, line, or 
plane) or the orientation of the hands.  Riffard and 
Chedmail (Riffard et al, 1996) use a similar approach and 
determine the optimum placement of the torso and the 
optimum posture of a seven-DOF arm, using simulated 
annealing, which is a global optimization method.  
Equations for target contact, collision avoidance, vision, 
body-orientation, and torque are combined in a weighted 
sum to form the objective function.  These methods 
involve optimization algorithms for unconstrained 
problems, so constraints must be included in the objective 
function as penalty terms.  Consequently, the extent to 
which one uses the objective function to model what 
drives human performance is limited.  Yang et al (2004; 
2006) provide an optimization-based approach that 
leverages constrained optimization and uses a relatively 
complex human model based on DH-method (Denavit and 
Hartenberg, 1955).  This approach predicts posture in real 
time and allows for a relatively large number of DOFs.  
There is no difficulty in altering model parameters and 
seeing the consequences in the simulation. 

With regards to analyzing postures once they have been 
predicted or simulated, currently available computational 
methods are limited.  Because posture selection during 
forceful exertions has a strong relationship between hand-
force and posture (Haslegrave et al, 1997), and because 
external forces are involved in almost any working 
posture, posture prediction with external loads and joint 
torques has become a significant frontier.  The 3D Static 
Strength Prediction Program (3DSSPP) is one of the 
earliest models for calculating joint strength (Chaffin et al, 
1991; Chaffin, 1997).  This is involves a twelve-link model 
to determine static biomechanical estimates of joint 
moments, spinal compression forces, and balance for 
sequential static postures from motion models.  It involves 
the analysis of a predetermined postures (actual posture 

prediction is not involved), and the skeleton model is 
relatively simple.  OpenSim (Delp et al, 2007) is open 
source software that allows users to develop models of 
musculoskeletal structures and create dynamic 
simulations of a wide variety of movements.  Variables 
such as joint torques and muscle forces are calculated 
with pre-recorded movement of a human body.  This is 
only a simulation model, and it cannot predict posture or 
motion. 

With regards to motion prediction, there has been a 
substantial amount of work completed.  Recently, an 
optimization-based predictive dynamics method has 
matured for predicting dynamic motion with different tasks 
such as walking (Xiang et al, 2007), lifting (Xiang et al, 
2008), and stair-climbing (Bhatt et al, 2008).  However, 
although advancements have been made with dynamic 
motion prediction, relatively little work has been conducted 
with incorporating external loads in posture prediction. 

Given that discomfort is often considered a primary factor 
in dictating human posture, it is a necessary consideration 
with any development of posture-prediction capabilities.  
In fact, some literature suggests that joint torque should 
be combined with posture prediction capabilities in order 
to predict human posture more accurately, and joint 
torques can only be calculated is applied loads are 
incorporated in the predictive models.  Allread et al (1998) 
perform experiments to evaluate discomfort in 
manufacturing environments and find that overall total-
body discomfort depends on external loads.  Santos et al 
(2000) conduct experiments to correlate subjective 
indications of discomfort with biomedical indices that are 
evaluated using a 54-DOF motion-capture model.  The 
authors find a linear relationship between discomfort and 
the following two biomedical indices: 1) the deviation from 
a neutral position, and 2) the moments in the muscles that 
are necessary to counter the effect of gravity.  Other 
authors also suggest that joint stresses and loads provide 
an additional factor for modeling discomfort (Kayis and 
Hoang, 1999; Bubb and Estermann, 2000).  Zacher and 
Bubb (2004) draw similar conclusions with respect to a 
proposed force-based discomfort model.  They find that 
discomfort depends on the magnitude and direction of 
forces at the joints.  Although much experimental work has 
been completed regarding joint torque and posture, there 
are currently no computational posture-prediction models 
involving joint torque. 

In general, there has been no work to combine posture-
prediction capabilities with applied loads.  Physics based 
posture prediction is currently unavailable and is clearly 
needed.  Although accurate for single subjects, data-
based posture prediction lacks autonomy.  Traditional 
analytical approaches to IK are impractical for complex 
human systems, and they are not physically accurate 
(static equilibrium is not considered).  Currently available 
static analysis tools are not predictive.  Consequently, 
there is a distinct need for a real-time computational 
approach to posture prediction that incorporates applied 



 

loads, calculates joint torques, and provides useful 
feedback. 

Overview of the Paper 

This paper leverages success at The University of Iowa’s 
Virtual Soldier Research (VSR) Program in developing 
SantosTM, a highly realistic predictive human model 
(Abdel-Malek et al, 2006; Yang et al, 2007).  Santos uses 
an optimization-based approach to posture prediction, and 
this paper presents a new method for incorporating 
equations of static equilibrium in this approach.  First, an 
overview of optimization-based posture prediction is 
provided.  Then, a detailed optimization formulation is 
developed for an upper-body model, which incorporates 
applied loads, static equilibrium, and torque-based 
performance measures (objective functions).  Basic 
examples are run with loads applied to both hands 
simultaneously.  The results are evaluated quantitatively in 
terms of numerical output, and qualitatively in terms of 
visual outputs.  Finally, contributions are summarized, 
high level issues and challenges are discussed, and future 
work is presented. 

OPTIMIZATION-BASED POSTURE PREDICTION 

This section provides an overview of the current 
optimization-based approach to posture prediction.  The 
human skeletal system is highly redundant from a 
kinematics perspective, meaning there are infinitely many 
postures one can assume in order to contact a single 
target point.  This means there are infinitely many 
solutions to most inverse kinematics problems (determine 
human joint angles necessary to contact specified 
Cartesian points) involving the human body.  However, it 
is possible to determine a single realistic posture by using 
optimization. 

Simulating human posture depends largely on how the 
human skeleton is modeled.  We view a skeleton as a 
series of links with each pair of links connected by one or 
more revolute joints.  Therefore, a complete human body 
can be modeled as several kinematic chains, as shown in 
Figure 1. 

X 
Z 

Y 
X 

Z 

Y 

n q 

. . . . . . 

1 n q − 

2 n q − 

X 
Z 

Y 
X 

Z 

Y 
Global  

Coordinate  
System 

Local  
Coordinate  

System 

1 n q − 

x 
z 

y 

End-effector 

( )x q

 
Figure 1: A kinematic chain of joints 

iq  is a joint angle and represents the rotation of a single 

revolute joint.  There is one joint angle for each DOF.  

[ ]1, ,
T n

nq q R= ∈q K  is the vector of joint angles in an n-

DOF model and represents a specific posture.  Each 
skeletal joint is modeled using one, or more kinematic 
revolute joints.  ( ) 3R∈x q  is the position vector in 

Cartesian space that describes the location of the end-
effector with respect to the global coordinate system.  For 
a given set of joint angles q, ( )x q  is determined using the 

Denavit-Hartenberg (DH)-method (Denavit and 
Hartenberg, 1955).  The DH-method uses a series of 
transformation matrices to translate from joint space to 
Cartesian space. 

With this pilot study, a 55-DOF model for the human torso, 
right arm, left arm, and neck is used as shown in Figure 2, 
where each cylinder represents a rotational DOF.  This 
also includes six global DOFs, three for translation of the 
hip point and three for rotation about the hip point.  The 
posture of this model is determined by solving the 
optimization problem developed at VSR and formulated in 
this section.  The design variables for the problem are iq , 
measured in units of radians.  

The first constraint, called the distance constraint, requires 
the end-effector to contact a target point.  In addition, each 
joint angle is constrained to lie within predetermined limits.  

U
iq  represents the upper limit, and L

iq  represents the 
lower limit.  These limits are derived from anthropometric 
data. 

The basic benchmark performance measure represents 
joint displacement (Jung et al, 1994; Mi et al, 2002).  This 
performance measure is proportional to the deviation from 
a neutral position, which is selected as a relatively 
comfortable posture, typically a standing position with 
arms at one’s sides.  N

iq  is the neutral position of a joint.  
Because some joints articulate more readily than others, a 
weight iw  is introduced to stress the relative stiffness of a 
joint.  Additional performance measures can also be used, 
such as musculoskeletal discomfort (Yang et al, 2004; 
Marler et al, 2005), potential energy (Yang, et al, 2004; 
Marler, 2005), and visual displacement (Marler et al, 2006; 
Smith et al, 2008).  

The optimum posture for the system shown in Figure 2 is 
then determined by solving the following problem: 

Find: DOFR∈q    (1) 

To minimize: ( ) ( )2

1

n
N

JointDisplacement i i i
i

f w q q
=

= −∑q  

subject to: ( )end-effector target pointDistance ε= − ≤x q x  

;  1,2, ,L U
i i iq q q i DOF≤ ≤ = …  

 



 

 

Figure 2: SantosTM and global coordinates and origin 

where ε  is a small positive number that approximates 
zero and DOF is the total number of degrees of freedom.  
(1) is solved using the software SNOPT (Gill et al, 2002), 
which uses a sequential quadratic programming (SQP) 
algorithm.  Analytical gradients are determined for all 
objective functions and for all constraints. 

The formulation in (1) involves kinematic posture 
prediction only. It provides the foundation for predicting 
posture with applied loads, which includes static 
equilibrium constraints as well as new objective functions 
that include joint torque. 

OPTIMIZATION FORMULATION FOR APPLIED 
LOADS 

This section presents a new optimization formulation for 
posture prediction, and it involves two primary 
contributions: constraints to enforce static equilibrium, and 
objective functions that incorporate joint torque and its 
effects on human posture. As with (1), the design 
variables are joint angles.  Given the joint angles, a critical 
component of the formulation is the calculation of joint 
torques and ground reaction forces. 

Joint Torques 

The torque calculated at each joint is an actuation torque, 
not a reaction torque.  It is essentially the torque that is 
necessary to keep the system in static equilibrium.  These 
torques are calculated as follows: 

kT T
i i k
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= − −  
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F

τ J g J
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  (2) 

where the first term in (2) represents the joint torques due 
to gravity. mi is the mass of link i, and g is the gravitational 
acceleration vector.  The second term represents the joint 
torques due to the summation of multiple external loads.  

Fk and Mk are the external force and moment, 
respectively, as applied to a point on link k.  Jk is the 
Jacobian matrix, and it is defined as follows: 
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0 ( )kT q  is a homogeneous transformation matrix used in 

the DH-method, k
kr  is the local coordinate of the point of 

force application in {k} local reference frame, and 
0

1  ( 1,..., )i i k− =z  is the local z-axis vector of {i} local 
reference frame expressed in terms of the global 
coordinate frame. 

In general, joint torque represents the force of a group of 
muscles acting on or around a joint, and the torque limits 
represent strength. Theoretically, changes in such limits 
with time would represent fatigue (Xia and Frey-Law, 
2008). 

Ground Reaction Forces 

For the ground reaction forces (GRF) distribution, we use 
the algorithm proposed by Xiang et al. (2007), which 
depends on the concept of the Zero Moment Point (ZMP).  
The ZMP is the point on the ground at which the horizontal 
components of the net moments are zero (Vukobratović 
and Borovac, 2004).  For a standing posture, the ZMP is 
located between the two supporting feet, and a linear 
relationship is used to distribute GRF to each foot.  Let 
points 1 and 2 the center points of the middle joints of the 
feet.  Let d1 and d2 the distances from the ZMP to points 1 
and 2, respectively.  Note that there are only normal 
moment yM  and resultant force R  ( xR , yR , zR ) at ZMP, 

as zM  and xM  vanish due to the definition of ZMP.  The 
GRF is linearly decomposed to the central points as 
follows: 

       

2
1

1 2
y y

d
M M

d d
=

+
;  2

1
1 2

R R
d

d d
=

+
        (6) 

       

1
2

1 2
y y

d
M M

d d
=

+ ;

1
2

1 2

R R
d

d d
=

+           (7) 
To implement the above idea, first, given current joint 
variables (angles and global translations), the static 
equilibrium equation for the whole body is used to 
calculate torques without GRF. The resulting global forces 
in the virtual branch (the branch/link that describes the 
global position and orientation of the human model in 
terms of DH-method) are not zero because the GRF is 
excluded.  Second, considering the equilibrium of the 
global forces and moments in the virtual branch with the 



 

ground reaction forces and moments, the GRF are then 
applied to the corresponding central points, and the 
updated joint torques are recovered from the static 
equilibrium equation (Figure 3). 
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Figure 3: Flowchart of calculating GRF  

Complete Formulation 

Given joint torques and GRFs, posture is determined by 
solving the following optimization problem: 

Find: DOFR∈q  
to minimize: 

( )( )
1

lim
1

( (( ) 1) ) ; 100
DOF

p pi
MaxNormalizedTorqueSquared

i i

f p
ττ

τ=

= + =∑q
 

 (8) 
subject to:  

( )end-effector target pointDistance ε= − ≤x q x  

( )( )1
Sum of forces =

DOF

ii
F τ ε

=
≤∑ q

 (9) 

( )( )1
Sum of moments =

DOF

ii
M τ ε

=
≤∑ q

 (10)  

;  1,2, ,L U
i i iq q q i DOF≤ ≤ = …  

; 1,2, ,L U
i i i i DOFτ τ τ≤ ≤ = K  

where ε  is a small positive number that approximates 

zero.  iτ , L
iτ , and U

iτ represent the joint torque, lower 
torque limit, and upper torque limits respectively. 

The torque-based objective function in equation reference 
goes here minimizes the maximum normalized joint 
torque. This approach to formulating a min-max problem is 
based on the work from Marler (2005).  Each torque is 

normalized by dividing each term by lim U L
i i iτ τ τ= − . The 

sum of joint torques and the sum of normalized joint 
torques were also initially tested as objective functions, 
but they resulted in unrealistic postures. 

The constraint in equation (9) represents static equilibrium 
for all forces and includes gravitational forces, GRF, and 
externally applied forces. Equation (10) represents static 

equilibrium for all moments including moments produced 
by gravity, joint torques, and externally applied moments. 

Although this formulation applies to a 55-DOF model, the 
global DOFs (at the hip point) and the DOFs for the lower 
body were constrained (frozen) to simplify this initial study.  
As with (8), this problem is solved using SNOPT.  Again, 
analytical gradients are determined for the objective 
functions and for all constraints. 

RESULTS 

A series of test were run using the formulation from the 
previous section, and test conditions are summarized in 
Table 1.  The global coordinate system (origin) to which all 
target points and loads are referenced, is shown in Figure 
2.  The left- and right-hand end-effectors are located at the 
respective joint centers for the wrists. 

Tests 1, 2, and 5 involve only the kinematic formulation 
shown in (1) and provide a baseline to which results from 
the new formulation are compared.  With Tests 2 and 5, 
although torques are not considered in the constraints or 
objective functions, loads are applied in order to calculate 
torques that would result without any torque limits and 
without any torque-based objective function.  
Computational results are given in Table 2.  The predicted 
postures for Tests 1, 2, and 5 are identical and are shown 
in Figure 3.  The predicted postures for Tests 3, 4, and 6 
are shown in Figures 4 through 6. 

The results in Table 2 were obtained using an Intel Xeon 
CPU, a 3.06 GHz processor, and 3.00 GB of RAM.  The 
Number of Major Iterations indicates the number of 
iterations necessary for the SQP algorithm to converge.  
The Number of Iterations indicates the cumulative number 
of minor iterations necessary to find a search direction for 
each major iteration.  Each major iteration involves 
multiple minor iterations in order to find a single search 
direction.  The zeros in the last column (Time for Objective 
Function) indicate the objective-function calculations 
required less than 0.005 second.   

Table 2 lists the minimum objective-function (performance 
measure) value, the number of optimization iterations, and 
the necessary computational time.  The last two columns 
indicate how much time was used for evaluating 
constraints and the objective function respectively.  As 
expected, including applied loads requires additional 
computational time.  This decrease in speed becomes 
more substantial when higher loads are applied, as with 
Test 6.  Much of this computational time is dedicated to 
evaluating constraints, because as loads are increased, 
more torque limits become active.  Nonetheless, with 
reasonable loads, the approach is relatively fast. 



 

 
Figure 4: Predicted posture for Tests 1, 2, and 5 

In Figure 4, because torque is not actually considered in 
the objective function of in the constarints, the predicted 
postures simply gravitate towards the neutral position 
while still satisfying the distance cosntraints (end-effectors 
must contact the target points), based on the joint-
displacement performance measure in (1).  However, 
when joint torque is considered, the predicted posture 
change substantially, as shown in Figures 5 through 7.  

In Figure 5 and 7, SantosTM bends the spine backward in 
order to support loads that are applied downward.  
Alternatively, in Figure 6, SantosTM bends forward to 
support loads that are applied upward.  In Figure 7, 
SantosTM bends the spine backward more than he does in 
Figure 5, because the external loads have been increased 
from 40N to 100N. In general, these results are 
reasonable and show expected deviation from the results 
of basic kinematic posture prediction.  Note that although 
the loads seem symmetrical, the resulting posture is not.  
This is because the application points for the two loads 
are not symmetrical, as indicated in Table 1.  Because the 
load on the right hand is further from the torso, SantosTM 
leans to the right to stay balanced and minimize joint 
torque. 

Figure 8 shows the actual torque values for Tests 5 and 6, 
along with the joint torque limits.  These limits are based 
on the Maximum Voluntary Torque (MVT) data reported 
by Javier Gonzalez et al. (2002) and have been adjusted 
to fit into the kinematic structure of our human model.  
Recall that with Test 5, torques are simply calculated from 
equations of static equilibrium but are not included in the 
objective function. 

 
Figure 5: Predicted posture for Test 3 

 
Figure 6: Predicted posture for Test 4 

Clearly, the new formulation (used with Test 6) reduces 
the joint torques.  With the kinematic posture prediction 
approach, joint torques may exceed their limits, especially 
in the spine and clavicle regions. When the new 
formulation is used, the highest joint-torques arise in the 
lower spine and in the shoulders, as one would expect 
with the given loading conditions.  Given the nature of the 
applied loads, this is as one would expect.  Because no 
loads are applied to the head or neck, the torques in the 
neck are nearly zero and result only from the mass of the 
body segments. 

 



 

 
Figure 7: Predicted posture for Test 6 

 
Figure 8: Actual joint torque for Tests 5 and 6 

DISCUSSION AND CONCLUSION 

Although currently available posture-prediction tools are 
helpful, much of human posture depends on applied 
loads, reaction forces, and actuation torques at the joints.  
It is not sufficient to determine these quantities a 
posteriori; they must be involved in the prediction process.  
Consequently, in this paper, we have presented a new 
optimization-based approach to posture prediction with 
applied loads.  Initial steps have been taken to calculate 
joint torques, satisfy equations of static equilibrium, and 
include joint torques in a performance measure that drives 
human posture.  Subjective evaluation of visual results 
and quantitative results suggests that the approach is 
reasonably accurate. 

In general, the constraints represent boundary conditions 
for the optimization problems that either enforce 
conditions that are beyond the scope of the model (i.e. 
constraining joint limits because collision detection 
between bones is not modeled), represent physical laws 
(i.e. static equilibrium), or enforce requirements for 
analysis (i.e. touching a specific target.  Alternatively, the 
objective function(s) model what drives human posture.  
The proposed formulation allows one to test the effects of 
joint torque when studying what governs human posture.  
It is observed that minimizing maximum normalized joint 
torque provides natural postures when evaluated 
subjectively.  At this point, the proposition made at the 

beginning of this paper is clear that the joint torques 
should be included in the optimization cost function for 
load-based posture prediction problem. 

Although this pilot study was successful in testing a new 
approach to posture prediction, there a few areas of 
ongoing additional research.  First, the whole-body model 
that includes global DOFs for the hip point and DOFs for 
the legs will be tested.  Concurrently, a constraint will be 
added to represent the zero-moment-point and its effects 
on stability.  Additional hypotheses can be tested 
regarding what drives human posture, including methods 
for multi-objective optimization, which can combine 
multiple objective functions (performance measures).  In 
particular, how joint torque contributes to discomfort will 
be studied.  In addition, once reaction forces (between the 
human and contact points) are included as design 
variables, it will be possible to determine what types of 
postures avoid impractical or uncomfortable reaction 
forces.  Finally, validation studies will be completed using 
motion capture, to ensure the predicted postures reflect 
what real humans actually do. 
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Table 1: Hand end-effector positions and external loads 

Test # Perf. 
Measure 

End 
Effector Target point 

External loads  
Direction Magnitude 

1 Jnt. 
Displace 

LH (0.3,1.15,0.3) - 0 
RH (-0.5,1.15,0.3) - 0 

2 Jnt. 
Displace 

LH (0.3,1.15,0.3) (0,-1,0) 40N 
RH (-0.5,1.15,0.3) (0,-1,0) 40N 

3 Max 
Torque 

LH (0.3,1.15,0.3) (0,-1,0) 40N 
RH (-0.5,1.15,0.3) (0,-1,0) 40N 

4 Max 
Torque 

LH (0.3,1.15,0.3) (0,1,0) 40N 
RH (-0.5,1.15,0.3) (0,1,0) 40N 

5 Jnt. 
Displace 

LH (0.3,1.15,0.3) (0,-1,0) 100N 
RH (-0.5,1.15,0.3) (0,-1,0) 100N 

6 Max 
Torque 

LH (0.3,1.15,0.3) (0,-1,0) 100N 

RH (-0.5,1.15,0.3) (0,-1,0) 100N 

 
 

Table 2: Performance-measure values and optimization time 

Test # 
Perf. 

Measur
e 

Opt. Obj. 
Value 

Number of 
Iterations 

Number 
of Major 
Iteration

s 

Time for 
solving 

the 
problem 

Time for 
constraint 
function 

Time for 
Objective 
function 

1 Jnt. 
Displace 

2.63100 455 42 1.2s 1.08s 0.00s 

2 Jnt. 
Displace 

2.63100 455 42 1.2s 1.08s 0.00s 

3 Max 
Torque 

1.06127 267 46 4.56s 4.28s 0.23s 

4 Max 
Torque 

1.04367 127 24 1.67s 1.57s 0.13s 

5 Jnt. 
Displace 

2.63100 455 42 1.2s 1.08s 0.00s 

6 Max 
Torque 

1.15898 314 80 16.08s 15.13s 0.81s 
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