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ABSTRACT 

In the field of human modeling, there is an increasing 
demand for predicting human postures in real time.  
However, there has been minimal progress with 
methods that can incorporate multiple limbs with shared 
degrees of freedom (DOFs).  This paper presents an 
optimization-based approach for predicting postures that 
involve dual-arm coordination with shared DOFs, and 
applies this method to a 30-DOF human model.  
Comparisons to motion capture data provide 
experimental validation for these examples.  We show 
that this optimization-based approach allows dual-arm 
coordination with minimal computational cost. This new 
approach also easily extends to models with a higher 
number of DOFs and additional end-effectors. 

INTRODUCTION 

Evaluation of human postures and reaches has become 
essential in workspace-design and simulation.  However, 
current posture-prediction methods are often limited to 
single-arm reaches with one end-effector.  A more 
accurate human upper body model should include dual-
arm coordination, where each of two arms reaches a 
target point and both depend on the movement of the 
spine.  Hence, a model should include at least two end-
effectors and shared degrees-of-freedom (DOFs).  In 
order to more accurately represent human postures and 
reaches, we have developed a method to handle dual-
arm coordination with shared DOFs. 

There are several current approaches to human posture 
prediction.  Empirical approaches calculate realistic 
postures using anthropometrical data.  Using statistical 
analyses of the data, predictive posture models are 
formed, and then used to select the most probable 
posture [2, 3, 5, 16]. Although this method can be 
accurate and useful when extensive motion capture data 
exists, it has limited application in the absence of an 
accessible database. 

Inverse kinematics solutions, in particular pseudo-
inverse methods, can also provide sufficient posture 
prediction.  In this approach, the motion of each limb is 

mathematically modeled to formulate a set of governing 
joint equations [7, 8, 9, 10, 14, 15].  However, as the 
number of DOFs increases, solving the resulting system 
of equations becomes increasingly computationally 
challenging. 

Optimization-based approaches to posture prediction 
have gained momentum as an alternative.  These 
methods optimize to find a set of joint values that 
minimize a given human performance measure(s), such 
as joint displacement.  The joint values become design 
variables in the optimization and are constrained by joint 
limits.  Restricting the end-effector to reach the target 
point is treated as another constraint in the optimization 
problem [1, 13].  This approach requires no extensive 
data and is computationally efficient [6]. 

These approaches to posture prediction have been 
primarily concerned with only a single arm and end-
effector.  The empirical approach conceptually works for 
dual-arm coordination with no modification; however, the 
increased number of possible postures will necessarily 
require a much larger motion capture database to 
maintain accuracy.  Hence, the method can become 
progressively more limited as more DOFs and multiple 
end-effectors are introduced.  The optimization-based 
approach, however, lends itself to easy and effective 
modeling of multiple end-effectors, and its advantages in 
this capacity are addressed in this paper. 

Kim and Martin (2004) present another approach for 
modeling multiple limbs with shared DOFs, which 
extends inverse kinematics solutions to solve the 
subsystem of each limb separately [11].  In this work, the 
subsystems consist of the manual subsystem, which 
includes the torso and right arm, and the visual 
subsystem, which includes the torso and neck.  Given an 
inverse kinematics solution for each subsystem, a 
secondary objective is applied to reconfigure the shared 
joint angles, which occur in the torso.  This could be 
extended to combine more subsystems, including the 
torso and left arm.  However, extending inverse 
kinematics solutions can amplify related issues, such as 
computational complexity.  In addition, several 
subsystems sharing the same joints could result in 
difficulties when reconfiguring the shared joint angles. 
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A new method for dual-arm coordination is developed in 
this paper based on the optimization-based approach to 
posture prediction.  Rather than solving a separate 
problem for each subsystem, each end-effector is simply 
associated with one additional constraint in the 
optimization problem.  Shared DOFs are optimized 
exactly as independent DOFs, and are governed by the 
same human performance measure(s). 

The objectives of this paper are to 1) present a method 
for modeling multiple limbs; 2) introduce an optimization 
formulation incorporating multiple end-effectors; and 3) 
provide initial validation for the accuracy of this approach 
applied to dual-arm coordination. 

METHOD FOR MODELING MULTIPLE LIMBS 

For the purpose of representing postures, a human body 
can be represented by a series of links.  In this respect, 
modeling a human closely parallels modeling a high-
DOF robotic manipulator.  Accordingly, a model 
incorporating the torso, spine, shoulders, and arms can 
characterize human motion by using generalized 
coordinates qi to represent joint displacement.  For a 
series of n degrees of freedom, a vector q ∈ Rn of n 
generalized coordinates represents a posture.  Figure 1 
shows a general, n-DOF chain of links with the end-
effector defined at the end of the chain.  The global 
position vector, x(q), represents the Cartesian position of 
the end-effector with respect to the global coordinate 
system. 

 

Figure 1. A general n-DOF kinematic chain. 

Creating a single-arm human model requires only one 
such chain and yields realistic results using the 21-DOF 
model shown in Figure 2 [6]. 

 

Figure 2.  SANTOS™: A 21-DOF single-arm human model. 

However, for human models with multiple limbs, 
additional chains are necessary, and these chains often 
share links.  For example, modeling two arms requires a 
chain that starts at the waist and ends at the right hand 
as well as a chain that starts at the waist and ends at the 
left hand.  Both cases include links in the torso.  For our 
dual-arm model, the single-arm model in Figure 2 is 
reflected to the left arm for an additional 9 degrees of 
freedom.  The result is the 30-DOF model shown in 
Figure 3.  Although the development of the left arm is 
conceptually the same as that of the right, it is important 
to note that this addition leads to a double dependence 
on the torso.  Hence, there are 12 DOFs in torso that will 
contribute to the positions of both the right and left end-
effectors. 

 

Figure 3.  SANTOS™: A 30-DOF dual-arm human model. 

In terms of optimization-based posture prediction, it is 
necessary to compute the Cartesian position x(q) ∈ R3 
of an end-effector in order to constrain it to the specified 
target point.  Consequently, the Denavit-Hartenberg 
(DH) method is used to calculate x(q) for each end-
effector, given a set of joint angles q  [4].  Developing a 
model for the DH method involves embedding local 
frames at each DOF, where the ith z-axis represents axis 
of motion for the (i+1)th DOF and the ith x-axis is 
perpendicular to the (i-1)th z-axis as well as the ith.  The 
transformation matrix i-1Ti relates position and orientation 



in the ith frame to the (i-1)th frame.  It is expressed in 
terms of the angle θi from xi to xi-1 about zi-1, the distance 
di from xi to xi-1 along zi-1, the angle αi from zi to zi-1 about 
xi, and the distance ai from zi to zi-1 along xi.  These 
values are shown in Figure 4, where qi+1 is the joint 
displacement corresponding to frame i.   

 

Figure 4. Parameters for the DH method. 

The global position vector x(q) of the end-effector is 
expressed in terms of the transformations i-1Ti and is 
given by: 
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where xn is the position of the end-effector with respect 
to the nth frame and n is the number of DOFs.  Note that 
rotational displacement qi+1 changes the value of θi. 

For modeling multiple limbs, it is possible to compute the 
position of the end-effector of each chain separately 
using (1) and (2).  However, the transformations for the 
shared DOFs need only be calculated once.  In general, 
the position xlimb(q) of a given limb’s end-effector can be 
calculated by: 

( ) ( )( )( )=limb shared transform limb nx q T T T x  (3) 

where Tshared is the transformation matrix describing the 
position and orientation of the last shared coordinate 
frame with respect to the global coordinate system.  
Ttransform describes the position and orientation of the first 

coordinate frame of the limb with respect to the last 
shared coordinate frame.  Tlimb describes the position and 
orientation of the last coordinate frame of the limb with 
respect to the first coordinate frame of the limb.  These 
transformations are depicted in Figure 5. 

 

Figure 5. The transformations Tshared, Ttransform, and Tlimb. 

In reference to Figure 3, there are two end-effectors and 
12 shared DOFs, which are in the spine.  From 
equations (1), (2), and (3), a new formulation is given as 
follows to calculate the global Cartesian positions xR and 
xL of the right and left end-effectors respectively: 
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where xRn and xLn are the local position vectors for the 
right and left end-effectors, respectively.  

OPTIMIZATION FORMULATION 

The optimization-based approach to posture prediction 
involves determining a set of joint values q that 
minimizes a given human performance measure(s).  For 
a human model with multiple end-effectors, the optimal 
posture is found by solving the following optimization 
problem: 

 

 

 



Find: ∈ nRq  (7) 

to minimize: Human performance measure(s) 

subject to:  ( ) ε − ≤ 
2targetx q x  for each x(q) 
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In this case, the design variables are the n joint angles 
qi.  The first constraint in (7) requires that each end-
effector meet its corresponding Cartesian target point, 
where ε is a small positive number sufficiently close to 
zero.  The second constraint in (7) ensures that the joint 
angles stay within the lower joint limits, qi

L, and upper 
joint limits, qi

U.  Note that in this general formulation, the 
proposed optimization-based approach allows us to 
restrict multiple end-effectors simply by using additional 
constraints. 

To predict posture for the 30-DOF dual-arm model in 
Figure 3, the constraints must restrict both the right and 
left end-effectors to reach their target points.  Using (4) 
and (5), the optimization formulation becomes:  

Find: ∈ nRq  (8) 

to minimize: Human performance measure(s) 

subject to:  ( ) ε − ≤ 
2target

R Rx q x  
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2target

L Lx q x  
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where xR

target and xL

target are the given Cartesian target 
points for the right and left end-effectors, respectively.  
Note that the quality of the result in this formulation will 
depend on the same human performance measure(s) 
that dictates the single-arm result.  Using this new 
optimization-based approach for dual-arm coordination, 
the shared joints are treated equally with the 
independent joints with respect to the objective function. 

This optimization formulation was implemented using a 
human performance measure based on joint 
displacement.  Objective functions derived from joint 
displacement have been used in single-arm, 
optimization-based posture prediction with some 
success [13].  Conceptually, joint displacement refers to 
the difference between the final posture and a neutral 
posture.  This neutral posture is selected to be a 
relatively comfortable posture, typically a standing 
position with the arms at the sides.  Joint displacement is 
mathematically defined as: 
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=
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N
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where qi is the ith joint value in the final posture, and qi

N is 
the ith joint value for the neutral posture.  One can view 
(9) as a weighted sum of objectives in a multi-objective 
optimization problem, where each joint term in the 
summation constitutes an individual objective.  The 
weights wi account for the fact that certain segments of 
the body articulate more readily than others.  Assigning 
a higher value to wi results in a particular objective 
contributing more significantly to the sum and thus 
having a stronger effect on the final solution.  
Essentially, it becomes more important for a heavily 
weighted joint to be near its neutral position.  For this 
study, the weights are determined by trial and error, and 
are given in Table 1. 

Table 1.  Weights for displacement objective. 

qi wi Comments 

1 4 7 10, , ,q q q q
 

100 
Used with both positive and 

negative values of − N
i iq q  

2 5 8 11, , ,q q q q
 

100 

1000 

When − > 0N
i iq q  

When − < 0N
i iq q  

3 6 9 12, , ,q q q q
 

5 
Used with both positive and 

negative values of − N
i iq q  

13 22,q q  75 
Used with both positive and 

negative values of − N
i iq q  

17 26,q q  50 When − > 0N
i iq q  

 

RESULTS 

The repercussions of incorporating multiple limbs that 
share common DOFs can be demonstrated by viewing 
results with single-arm posture prediction. Figure 6 (a) 
shows a single-arm posture on SANTOS™, whereas 
Figure 6 (b) shows a dual-arm posture using the same 
target point for the right end-effector.  Note how the 
shared DOFs in the spine shift to facilitate reaching both 
targets.  



 

Figure 6.  Posture prediction using (a) single-arm and (b) dual-arm. 

The predicted postures for three sets of target points 
were compared to motion capture results from a male 
subject.  Target positions are given with respect to a 
global coordinate frame located in the torso, coincident 
with the zeroth frame in Figure 3, and are measured in 
centimeters.  For target set #1, the right end-effector 
target, xR

target, is (-41.7, -4.3, 38.7) and the left end-
effector’s target, xL

target, is (39.1, -4.4, 40.1).  The 
predicted posture is visualized on SANTOS™ in Figure 
7, while the motion capture result for the same target set 
are shown in Figure 8.  Both postures are similar; 
however, the motion capture shows a slight bending at 
the elbow that is not predicted by this model.  Slightly 
different anthropometries between SANTOS™ and the 
motion capture subject are a possible contributing factor.  
However, minimizing joint displacement conceptually 
means that the model will tend toward the neutral 
posture.  Since the neutral posture is defined with a 
straight arm, the result of the optimization will tend 
toward a straight arm.  Hence, more realistic results 
should be possible with a more inclusive human 
performance measure(s). 

For target set #2, xR

target is (-65.3, 44.7, -41.0) and xL

target is 
(39.4, -5.2, 40.6).  Figure 9 and Figure 10 depict the 
predicted result and motion capture result, respectively.  
Again, the predicted result shows less bending in the 
elbow, and also less twisting in the arm.  For target set 
#3, xR

target is (-41.3, 44.5, 60.9) and xL

target is (-36.4, 44.4, 
63.8).  The predicted result is shown on SANTOS™ in 
Figure 11 and the motion capture result shown in Figure 
12.  The predicted result more closely resembles the 
motion capture result in this case.   

 

Figure 7. Predicted posture on 30-DOF SANTOS™ for target set #1. 

 

Figure 8.  Motion capture result on 30-DOF model for target set #1. 

(a) (b) 



 

Figure 9.  Predicted posture on 30-DOF SANTOS™ for target set #2. 

 

Figure 10.  Motion capture result on 30-DOF model for target set #2. 

 

Figure 11.  Predicted posture on 30-DOF SANTOS™ for target set #3. 

 

Figure 12.  Motion capture result on 30-DOF model for target set #3. 



One benefit of the optimization-based approach to 
posture prediction is computational efficiency.  Hence, 
posture prediction feedback can be obtained in real-time 
or near real-time speeds.  This might be especially 
useful to quickly evaluate workspace or compare a 
variety of postures over different anthropometries.  In 
fact, the new approach, incorporating multiple limbs and 
shared DOFs, maintains computational speed.  The 
dual-arm posture prediction on the 30-DOF SANTOS™ 
took only approximately 0.15 sec for each set of targets 
on a 2.6GHz Pentium4 CPU with 512MB RAM.  Single-
arm posture prediction on the 21-DOF SANTOS™ takes 
approximately 0.10 sec on a similar machine. 

CONCLUSION 

In this paper, we have presented a new optimization-
based approach to modeling dual-arm coordination.  
This approach generalizes to the modeling of multiple 
limbs that share DOFs.  The optimization formulation is 
conceptually straightforward, and allows us to 
incorporate additional end-effectors simply by adding 
additional constraints.  In addition, the new approach is 
computationally efficient and has provided realistic 
predicted postures in near real-time.  The results have 
been validated successfully using motion capture.   

Validation of the results indicates that the proposed 
method can produce realistic postures.  Although 
nuances of the final postures can depend of the 
particular performance measure (objective function) 
used in the optimization formulation, we have 
nonetheless demonstrated that using the optimization-
based approach for posture prediction is easily and 
effectively adopted to models with multiple end-effectors.  
However, these validation studies are preliminary, and 
there are opportunities for additional research in terms of 
motion capture studies.  First, the anthropometry of the 
human subject and the SANTOS™ model will be varied 
in order to study the generality of the new approach.  
Such variations are easily implemented in the proposed 
model in terms of kinematic link lengths.  Second, a 
motion capture study involving many multiple subjects of 
various anthropometries will provide additional insight 
concerning posture prediction. 

As the need for simulating human posture in digital 
environments grows, there is a demand to move beyond 
single-arm reaches into dual-arm coordination.  The 
method presented addresses not only dual-arm 
coordination, but can also be easily extended to more 
complex human models with multiple end-effectors and 
shared DOFs.  The optimization-based approach 
discussed in his paper offers a straightforward way to 
incorporate these additional end-effectors in with 
minimal computational cost. 
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