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ABSTRACT 
This study involves further development of a direct 
approach to optimization-based posture prediction by 
using multi-objective optimization (MOO). Human 
performance measures representing joint displacement 
and delta potential energy are aggregated to predict more 
realistically, how virtual humans move. It is found that 
potential energy does not govern independently human 
posture. Rather, it must be coupled with another objective 
to avoid non-unique solutions and to improve realism. In 
any case, it is more suitable when reaching behind the 
avatar. Thus, we refine the idea of task-based posture 
prediction, concluding that performance measures should 
depend not only on the task being completed but also on 
where the task is completed relative to the human. Pareto 
optimal sets are depicted using the weighted sum and 
weighted min-max methods for MOO. By leveraging a 
special form of Pareto optimal set, insight is gained 
concerning how the functions should be combined. We 
find that the two MOO methods perform equally well, and 
the general form of the sets is independent of the target 
(to be touched with the finger) location. 
 
KEY WORDS 

Posture prediction, Pareto optimal, multi-objective, 
optimization 
 

1. INTRODUCTION 

A fundamental component of virtual humans, which are 
used to test and improve design prototypes more cost 
effectively, is the ability to predict postures. The basic 
posture prediction problem entails having an avatar 
contact a specified target point with the end-effector, 
using a realistic and natural posture, where an end-
effector is a point of interest on a kinematic system such 
as an arm. Although a few approaches for solving the 
posture prediction problem are presented in the literature, 
the direct optimization-based approach [1,2,3,4,5] 
provides distinct advantages. It affords the virtual human 
a substantial amount of autonomy; it is applicable to 
models with a relatively high number of degrees-of-
freedom (DOF); and it can yield real-time predictions. We 
capitalize on these advantages to provide new 
understanding of human postures and to develop new 
capabilities. With the direct optimization-based approach, 

the joint angles for all DOFs in the human model provide 
the design variables and are determined by optimizing a 
human performance measure such as joint displacement 
or energy. In general, performance measures are metrics 
that govern how a virtual human moves, given a particular 
scenario. The position of the end-effector is constrained 
to remain on a specified point, line, or plain, and the joint 
angles are constrained to remain within specified limits. 
The prediction of a single posture requires the solution of 
only one optimization problem. 
 
A key hypothesis behind this approach is that human 
motion is characterized by the performance measures, and 
which measure is most applicable depends on the nature 
of the task being completed. This hypothesis is extended 
to suggest that posture can be governed by multiple 
measures simultaneously. Then, one must aggregate the 
performance measures using multi-objective optimization 
(MOO). Consequently, we present a novel study of multi-
objective optimization within the context of posture 
prediction. 
 
Although human posture prediction has been studied 
extensively, methods and concepts associated with MOO 
have not yet been exploited fully. In fact, when 
incorporating multiple performance measures 
simultaneously, only the weighted sum method has been 
used with ad hoc weights, and analysis of the results in 
terms of MOO is not provided. Furthermore, the weighted 
sum method has only been used to yield a single solution 
point. Evaluating sets of solution points, studying 
additional methods, and determining which combination 
of performance measures predicts postures most 
effectively, can improve the predictive model and 
increase understanding of how and why humans assume 
particular postures. Use of different MOO methods in this 
capacity can also provide a practical comparison of the 
methods. Ref. 6 provides an initial feasibility study for 
MOO-based posture prediction, and this paper presents a 
more in depth look at the topic. 
 
There are essentially two fundamental approaches to 
posture prediction. First, one can predict posture based on 
prerecorded motion, anthropometric data, and functional 
regression models [7,8,9,10]. Alternatively, one can use 
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inverse kinematics to predict posture, without observed 
data. There is a variety of approaches to inverse 
kinematics, one of the most common of which is the 
pseudo-inverse method [11,12,13]. The solution (set of 
joint angles representing a posture) is determined 
iteratively using the pseudo-inverse of the Jacobian 
matrix, which represents the derivatives of the end-
effector position with respect to the joint angles. An 
independent optimization problem is solved with each 
iteration in order to minimize the deviation of the 
resolved posture from a predetermined reference posture. 
Some authors combine the two above-mentioned 
approaches [14,15]. The direct optimization approach 
falls under the category of inverse kinematics and requires 
no preliminary posture data. 
 
In this paper, first, an overview is provided of the 
optimization formulation for posture prediction. Then, a 
new hybrid method (combination of genetic algorithm 
and gradient-based algorithm) is developed and used for 
function-normalization. Two performance measures, joint 
displacement and a modified form of potential energy, are 
compared. Pareto optimal sets for four different targets, 
which are determined using the weighted sum method and 
the weighted min-max method, are also presented and 
discussed. By depicting the Pareto optimal sets, we 
evaluate the relationship between the two performance 
measures, and we determine how dependent the results 
are on the nature of the target. Concurrently, the relative 
performance of the weighted sum method and the 
weighted min-max method is analyzed in terms of the 
methods’ ability to depict the Pareto optimal set. 
 

2. OPTIMIZATION-BASED POSTURE 

PREDICTION 

Essentially, the body is modeled as a kinematic system, a 
series of links connected by revolute joints that represent 
musculoskeletal joints. It incorporates the spine, the 

shoulder, and the arm. A generalized coordinate, 
i
q , 

represents the rotational displacement of each joint. Thus, 
n

∈q R  is the vector of n-generalized coordinates in an n-

DOF model and represents a specific posture, where 

[ ]1 2

T

n
q q q=q � . With this study, a 21-DOF model 

for the human torso and right arm is used, as shown in 
Figure 1, where each cylinder represents one DOF. 

Local Coordinate 

System 

  

   

( )x q
 

Wrist 
Elbow 

Shoulder 
Clavicle 

Spine 

 
Figure 1: Detailed 21-DOF model 

 

The optimum posture (set of q-values) is determined by 
solving the following optimization problem: 

Find: n

R∈q  (1) 

to minimize: Joint Displacement, Delta Potential 
Energy 

subject to: ( )
2

p
ε − ≤ x q x  

;  1, 2, ,
L U

i i i
q q q i n≤ ≤ = …  

where ( ) 3
R∈x q  is the position vector in Cartesian space 

that describes the location of the end-effector as a 
function of the generalized coordinates and in terms of the 
global coordinate system located a the base of the spine. 
Given a set of generalized coordinates, the position of the 

end-effector is calculated using the DH-method [16]. p
x  

is the target position. The design variables are the 

generalized coordinates 
i
q . The first constraint in (1) 

requires that the end-effector contact a predetermined 

target in Cartesian space, where ε  is a small positive 

number that approximates zero. In addition, each 
generalized coordinate is constrained to lie between lower 

and upper limits, represented by L

i
q  and U

i
q  respectively. 

 
The first objective function represents joint displacement 
and is proportional to the deviation from the neutral 
position. The neutral potion is selected as a relatively 
comfortable posture, typically a standing position with 

arms at one’s sides. N

i
q  is the neutral position of a joint, 

and N
q  represents the overall posture. Because some 

joints articulate more readily than others, a weight 
i

γ  is 

introduced to stress the relative stiffness of a joint. The 
final joint displacement is given as follows: 

 ( ) ( )int

1

2
n

Jo displacement i

i

N

i i
f q qγ

=

= −∑q  (2) 

 
As an alternative to setting weights, the mass of each 
body segment, inherently included in potential energy, 
can provide a natural weighting factor. In this vein, we 
represent the primary segments of the upper body with 
five lumped masses: three for the lower, middle, and 
upper torso, respectively; one for the upper arm; and one 
for the forearm. The datum (point of zero potential) for 
each body segment is defined by the neutral position. Ref. 
6 discusses the details of consequent function for delta 
potential energy. 
 
3. MULTI-OBJECTIVE OPTIMIZATION  

Minimizing multiple performance measures 
simultaneously requires the use of special MOO 
algorithms. Therefore, in this section, we provide a brief 
overview of MOO theory, formulations for MOO 
methods, and a novel approach for normalizing the human 
performance measures. 
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Given a vector of objective functions 

( ) ( ) ( ) ( )1 2
, , ,

T

k
f f f=   f q q q q� , the feasible design 

space Π  is defined as the set 

( ){ }0, 1, 2, ...,
j

g j m≤ =q q , where ( ) 0
j

g ≤q  is an 

inequality constraint. The feasible criterion space Z is 

defined as the set { }( ) ∈f q q Π . The point in the criterion 

space where all of the objectives have a minimum value 
simultaneously is called the utopia point. Typically, this 
point is unobtainable. The most common solution concept 
for MOO problems is Pareto optimality. A solution point 
is Pareto optimal if it is not possible to move from that 
point and improve at least one objective function without 
detriment to any other objective function. Alternatively, a 
point is weakly Pareto optimal if it is not possible to 
move from that point and improve all objective functions 
simultaneously. 
 
The weighted sum method for MOO entails minimizing 
the following objective: 

 ( ) ( )Joint displacement Delta potential energy1 2
F w f w f= +q q  (3) 

The weighted sum method provides a sufficient condition 
for Pareto optimality; it always yields a Pareto optimal 
point. However, it cannot yield points on non-convex 
portions of the Pareto optimal set. 
 
The weighted min-max approach entails solving the 
following problem: 

Find:  and 
DOF

Rλ ∈q  (4) 

to minimize: λ   

subject to: ( )1 Joint discomfort
0w f λ− ≤q  

( )2 Delta potential energy
0w f λ− ≤q  

Using (4) provides a necessary condition for Pareto 
optimality. That is, it enables one to capture all of the 
Pareto optimal points, even if the Pareto optimal set is 
non-convex, but it may yield points that are only weakly 
Pareto optimal as well. 
 
Often, weights are used to indicate the relative 
significance of the different objectives and thus provide a 
single solution that incorporates one’s preferences. 
However, they may also be varied consistently as a 
mathematical parameter to yield a series of solution points 
that represent the Pareto optimal set. The latter approach 
is taken in this study. (3) and (4) are solved using SNOPT 
[17], which utilizes the sequential quadratic programming 
method. 

 
As suggested in Ref. 18, normalizing objective functions 
is advantageous with MOO. Consequently, the two 
objective functions are normalized using the following 
approach: 

 
( )
max

norm
f f

f
f f

−

=

−

q
�

�

  (5) 

where f �  is a component of the utopia point (the 

minimum value for an independent objective function). 

( )max

1

max *i i j
j k

F F
≤ ≤

= q , where *
j

q  is the point that 

minimizes the jth objective function. (5) results in values 

for normf  that are approximately between zero and one. 

 
Using (5) requires accurate determination of global 
function minima (components of the utopia point). The 
most common methods for global optimization are 
genetic algorithms, which are described in detail in Ref. 
19. However, despite their ability to provide the global 
optimum, genetic algorithms can be prohibitively slow. 
Thus, we have developed a more efficient hybrid method, 
in which the gradient-based features of sequential 
quadratic programming and a genetic algorithm are 
combined. A special genetic algorithm that has been 
adopted for small population sizes is used [20]. Then, the 
member of each population with the highest fitness is 
selected and used as a starting point in the fast gradient-
based algorithm. This point is refined and then returned to 
the genetic algorithm. 
 
4. RESULTS 

In this section, the problem in (1) is solved. First, each 
objective function is used independently, and the 
relationships between the two performance measures are 
studied. Then, MOO is used to aggregate the measures, 
and the consequent Pareto optimal sets are analyzed. Four 
target points in Cartesian space are used to represent the 
workspace are illustrated in Figure 2. 
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Figure 2: Target Points 

 
The results when each objective function is minimized 
independently are studied using the front right target and 
the back target. The values of the objective functions are 
shown in Tables 1 and 2. Each row shows the values of 
the objective functions when one of the functions is 
minimized. Each column contains the values of a function 
at different postures. Clearly, these two objective 
functions oppose each other. In addition, the range of 
values for the two functions is significantly different, 
suggesting that the functions should be normalized if they 
are compared or combined. 
 
The actual postures associated with the points in Tables 1 
and 2, are shown in Figures 3 and 4. In evaluating the 
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visual results, we are concerned primarily with gross 
movement; the nuances of skin deflection are not 
addressed. Generally, minimizing delta potential energy 
results in increased torso rotation about the vertical axis. 
Using delta potential energy also results in more bending 
of the elbow. Delta potential energy should not 
necessarily be used alone. This suggests that human 
posture is not governed primarily by potential energy, but 
as we show, potential energy does play a role. This 
finding is counterintuitive and consequently significant. 

 Joint Disp. Delta Pot. Energy

Min Joint Disp. 1.55835 26.95374 

Min Delta Pot. Energy 176.13184 2.98259 

Table 1: Objective Function Values, Front Right Target 
 

 Joint Disp. Delta Pot. Energy

Min Joint Disp. 2.15469 31.88572 

Min Delta Pot. Energy 131.05643 1.68553 

Table 2: Objective Function Values, Back Target 
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Figure 3: Postures with the Front Right Target 
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Figure 4: Postures with the Back Target 

 
Testing reveals that delta potential energy does not always 
yield a unique solution point. There are many design 
points that result in the same function value, because there 
are many positions that all have the same potential energy 
value. This is especially true considering that the mass of 
the hand is not included in the potential energy 
formulation. Although the mass of the hand is relatively 
small, movement of the hand can result in slightly 
different postures that have the same value for potential 
energy. Practically, the potential for non-unique solutions 
reinforces the idea that delta potential energy should not 

be used alone. Thus, in an effort to determine a unique 
solution, delta potential energy should always be coupled 

with another performance measure. 
 
We find that the appropriateness of delta potential energy 
depends on the location of the target, an idea that has 
significant repercussions in terms of task-based posture 
prediction. As shown in Figure 4, using delta potential 
energy can be advantageous when the target is behind the 
human model, because the delta potential energy allows 
for more twisting in the waist. Based on these results, the 
idea of task-based posture prediction can be refined. We 
have found that performance measures should depend not 
just on the task being completed but where the task is 

completed, relative to the body. 
 
After evaluating the relative performance of the 
performance measures independently, they are considered 
in the context of a MOO problem. The performance 

measures are first normalized using (5). Values for f �  

and maxf  are determined for each target point based on 

values such as those shown in Tables 1 and 2. A convex 

combination of functions is used such that 0
i

w ≥  and 

1 2
1w w+ = . Two Pareto optimal sets are shown in 

Figures 5 and 6.  
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Figure 5: Pareto Optimal Set Using Weighted Sum with 

the Front Right Target 
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Figure 6: Pareto Optimal Sets Using Weighted Sum with 

the Back Target 
 
Similar trends were seen with other target points. The 
gaps are simply a result of the number of points that are 
used. By studying the Pareto optimal set as a whole, we 
can gain insight into posture prediction and simplify the 
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decision as to which Pareto optimal solution is most 
appropriate. 
 
The Pareto optimal sets indicate function trade-offs. 
Assuming we view the set as a type of reduced feasible 
space, a trade-off indicates how much one function 
increases if we choose to reduce the other function by a 
certain amount. In other words, the Pareto optimal set 
indicates the sensitivity of one function to the other. In 
this context, this problem involves a special form of the 
Pareto optimal set. Note that for the dashed lines indicated 
in Figure 5, the value of one of the objective functions is 
approximately constant. That is, one function can be 
reduced with approximately no detriment to the other. 
These lines represent points that are approximately 
weakly Pareto optimal and thus irrelevant for all practical 
purposes. Such points are provided when one of the 
weights in the weighted sum is significantly higher than 
the other weight. Thus, weights with significantly 

different magnitudes should not be used when combining 

the normalized versions of joint displacement and delta 
potential energy. This characteristic in the Pareto optimal 
set surfaces with all of the targets. Consequently, we 
show that different targets do not have a significant effect 
on the general nature of the Pareto optimal set, although 
the ranges for the function-values may change. 
 
Notice that in Figure 6 there seem to be two separate 
Pareto optimal curves. This is a result of gradient-based 
optimization algorithms, which only yield local optima. 
Consequently, it is possible to find a solution point that is 
only locally Pareto optimal. Although the two sets of 
points do not represent significantly different objective-
function values, this trend suggests that it may be 
beneficial to use a global optimization algorithm for 
determining the Pareto optimal set. 
 
Figure 7 shows the results for the front right target when 
the weighted min-max method is used. When compared 
with Figure 5, it is clear that the two MOO methods 
provide similar Pareto optimal sets. This trend was 
evident with the other target points as well. Despite the 
fact that the weighted sum method provides a sufficient 
condition for Pareto optimality, while the weighted min-
max method provides a necessary condition, the weighted 
sum and weighted min-max methods illustrate the Pareto 

optimal sets for this problem with equivalent 

effectiveness. 
 
Some of the points in Figure 7 are used to compare 
different postures for a single target. Preferences, in terms 
of which function is more significant, are modeled by 
varying the weights, and the resulting postures are shown 
in Figure 8, with noted weights. Clearly, different weights, 
which yield different Pareto optimal points, result in 
significantly different postures. By comparing Figures 3 
and 8, one can see the consequence of gradually 
increasing the degree to which delta potential energy is 
considered. As the significance of the delta potential 

energy is increased, there is an increase in bending of the 
torso and a subsequent reduction in the realism of the 
predicted posture. However, introducing delta potential 
energy to joint displacement as a minor component 
improves the result by reducing the height of the elbow 
slightly. Thus, we show that the most realistic posture 
results from a minor consideration of potential energy. 
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Figure 7: Pareto Optimal Set Using Weighted Min-max 

with the Front Right Target 
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Figure 8: Postures Using the Weighted Min-max Method 

with the Front Right Target 

 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we have used multi-objective 
optimization to study human posture and to advance 
posture prediction. Pareto optimal sets have been 
presented as a new analysis tool, indicating various 
features of the posture prediction problem. In this vein, 
we have identified and exploited a special form of the 
Pareto optimal set, and we have investigated the 
sensitivity of this form to changes in the target. By 
evaluating postures at various Pareto optimal points, we 
have studied the sensitivity of human posture to shifts 
along the Pareto optimal curve and to varying degrees of 
emphasis on the two performance measures. 
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The primary conclusions based on this study are: (1) 
Human posture does not depend heavily on potential 
energy. Nonetheless, the delta potential energy 
performance measure yields useful results as a component 
of a multi-objective performance measure, especially 
when used for targets behind the human. It should always 
be coupled with another objective, in order to reduce the 
likelihood of non-unique solutions. (2) The location of a 
task, in addition to the general nature of a task, should be 
factored into the process of task-based posture prediction. 
Different zones around the human require different 
performance measures. (3) The general form of the Pareto 
optimal set tends to be independent of the target location. 
(4) When weights are used, they should not have 
significantly different orders of magnitude. (5) The 
presence of local minima (rather than global minima) can 
play a significant role with some targets. (6) There is no 
significant difference between the Pareto sets provided by 
the weighted sum method and the weighted min-max 
method. 
 
This study has flushed out potential areas for additional 
work. Genetic multi-objective algorithms need to be 
considered and their results compared to those of 
gradient-based algorithms. The actual postures for the two 
different Pareto optimal sets depicted in Figure 6 should 
be evaluated to study the differences between various 
local solutions. In addition, a similar study should be 
conducted with non-unique minima for the delta potential 
energy to determine how different the postures are for 
such minima. The mass of the hand should be considered 
in the delta potential energy, and the consequent effects 
on the existence of non-unique solutions should be 
evaluated. Finally, the postures resulting from various 
combinations of performance measures need to be 
validated. 
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