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ABSTRACT 

Using optimization to predict human posture provides a 
unique means of studying how and why people move.  In 
a formulation where joint angles are determined in order 
to minimize a human performance measure subject to 
various constraints, the general question of when to 
model components as objective functions and when to 
model them as constraints has not been addressed 
thoroughly.  We suggest that human performance 
measures, which act as objective functions, model what 
drives human posture, whereas constraints provide 
boundary conditions that restrict the scope of the model.  
This applied research study tests this hypothesis and 
concurrently evaluates how vision affects the prediction 
and assessment of upper-body posture.  Single-
objective and multi-objective optimization formulations 
for posture prediction are used with a 35 degree-of-
freedom upper-body model of a virtual human called 
SantosTM.  Vision is modeled as an objective function or 
as a constraint, and these two cases are tested in the 
context of standing reaching-tasks as well as reaching-
tasks within a cab environment.  Results are evaluated 
qualitatively in terms of predicted postures, and 
quantitatively in terms of values for various performance 
measures.  We find that the proposed hypothesis is 
accurate.  We also find that vision alone does not govern 
human posture and that the selection of specific 
performance measures and constraints is task based.  
Some scenarios require one to see a target, while others 
necessitate only trying to see a target.  The function of 
restricting the scope of the model is only relevant with 
difficult tasks, where constraints are likely to be active.  
Consequently, performance when using vision as a 
constraint and as an objective is similar for targets that 
are relatively easy to see.   The proposed vision 
constraint provides the capability to model tasks that 
require vision.  It also allows one to conduct what-if 
studies and evaluate the human-performance 
consequences of forcing a subject to see a target. 
 

INTRODUCTION 

The objective of this paper is to compare different ways 
of modeling vision of a virtual human and how it affects 

upper-body posture.  Vision is an important aspect of 
posture prediction, because humans typically strive to 
visualize what they are touching.  Currently, there are 
two performance measures for modeling vision with the 
SantosTM virtual human: visual acuity and visual 
displacement.  SantosTM is a comprehensive, highly 
realistic, biomechanically accurate predictive virtual 
human with variable anthropometry.  A thorough 
explanation of the vision performance measures is 
provided by Marler et al (2006).  In general, although 
visual acuity depends on a variety of elements, most 
relevant to posture is its inverse dependence on the 
angular distance of a target from the eye fovea, with a 
value of zero when outside one’s peripheral vision.  The 
visual acuity performance measure models this element.  
Alternatively, visual displacement is essentially the 
absolute value of the angular distance from fovea 
regardless of target location.  The development of these 
performance measures includes basic experimental 
validation.  The authors find that visual acuity has little 
effect on posture when the target point is outside the 
initial field of view.  Thus, in this study, visual 
displacement is used to predict postures, although the 
values for both performance measures are recorded and 
discussed. 
 
A vision constraint has been developed that allows the 
user to study cases where the avatar must look at the 
target regardless of how uncomfortable it may be or how 
extensive joint activity is.  The methods analyzed here 
involve an optimization based approach to predicting 
human posture.  Two test cases are applied to a number 
of different target points.  For both test cases, the 
optimization problem is constrained by joint limits and 
distance between the end-effector and the target point.  
The visual displacement performance measure is used 
as either an objective function or a constraint.  Target 
points are be analyzed, and final conclusions and 
recommendations are made. 
 
The primary intent of this work is to compare results 
obtained with various pre-defined validated models.  We 
are evaluating the performance of the vision-
displacement model when used as an objective function 
and when used as a constraint.  This evaluation is based 
on subjective visual inspection of predicted postures and 



on quantitative analysis of performance-measure values.  
Conducting experimental validation of the two uses is 
beyond the scope of this work. 
 

LITERATURE REVIEW 

Although many researchers have studied the cervical 
spine (the neck), the details of vision, the nature of eye 
movement, and even various characteristics of eye-hand 
coordination, little work has been completed that 
incorporates the tendency to look at what one is working 
with, in posture-prediction models.  Mi (2004) and Marler 
et al (2005a) provide extensive reviews of posture-
prediction capabilities.  Here, we focus on upper-body 
optimization-based posture prediction and present work 
with modeling the neck through vision performance 
measures and a vision constraint.  The vision 
performance measures are reviewed extensively by 
Marler et al (2006). 

Although many studies concerning the neck and vision 
are experimental, some work has been completed with 
modeling.  This kind of work originated with vision-based 
control of robots, a survey of which is provided by 
Hashimoto (2003).  Ouefelli et al (1999) solve a system 
identification problem to determine the kinematic 
characteristics of the neck model that most accurately 
approximates given data.  However, the model has only 
three DOFs, which the authors determine is too few.  
With the intent of studying the neural control of the neck, 
Mitelman and Enderle (2001) develop a model based on 
the neck muscular system and its relationship with the 
central nervous system.  Zanasi et al (2002) provide a 
basic 3-DOF planar dynamic model of the neck for 
studying passenger head movements in an automobile.  
Kim et al (2004b) model the neck and vision in the 
context of a method for coordinating multiple 
subsystems, such as visual gaze and manual reach.  
Essentially, and inverse-kinematics approach to seated 
motion prediction is extended to solve the subsystem of 
each limb separately.  The subsystems consist of a 9-
DOF manual subsystem, which includes the torso and 
right arm, and an 8-DOF visual subsystem, which 
includes the torso and neck.  The neck itself is 
composed of five DOFs.  With respect to modeling 
vision, conceptually, the line of site is simply constrained 
to intersect the point of interest.  A weighted pseudo-
inverse of the Jacobian is used, and the weights are set 
such that the predicted motion approximates 
prerecorded motion.  Given an inverse kinematics 
solution for each subsystem, a secondary objective is 
applied to reconfigure the shared joint angles, which 
occur in the torso. 

Many authors have studied movement of the actual eye.  
Yamada (1991) studies eye-head coordination and finds 
that it is almost impossible to rotate or translate the head 
without tilting one’s neck.  In addition, when visual 
targets move more than thirty degrees away from the 
line of site, one tends to move one’s eyes more than the 
head.  Crowley et al (1995) develop models for 

simulating how the eyes fixate on a point.  Drawing on 
observations from psychology, human factors, and 
computer vision, Chopra-Khullar and Badler (1999), and 
Gillies and Dodgson (2002) provide computational 
frameworks for modeling how an avatar reacts, in terms 
of eye movement, to the viewed or peripheral 
environment. 

METHODS 

This section provides an overview of the two test cases 
which were used to conduct this study.  Test Case #1 
was developed in order to isolate the visual 
displacement performance measure, whereas Test Case 
#2 used additional performance measures in an attempt 
to create more realistic postures.  
 
TEST CASE #1 

Test Case #1 uses three different optimization 
formulations to create postures and record performance-
measure values.  The purpose of Test Case #1 is to 
create postures using different optimization formulations, 
and to record performance measure values associated 
with the predicted postures.  The optimization problems 
are kept simple with a small number objective functions 
in order to isolate the visual displacement performance 
measure.  The testing method for Test Case #1 is as 
follows and is applied to all target points: 

1. A single objective optimization (SOO) 
problem is formulated to minimize visual 
displacement.  This SOO problem 
determines if vision alone governs human 
posture. 

2. The right hand end-effector is set to a target 
point.  

3. The predicted posture analyzed subjectively, 
and performance measures are recorded for 
quantitative comparison. 

4. A multiple objective optimization (MOO) 
problem is formulated with visual 
displacement and joint displacement as the 
objective functions.  Step 3 is repeated in 
order to compare the posture results of 
using vision as a performance measure and 
vision as a constraint.  The MOO method 
used to combine the various objective 
functions is based on the work of Marler 
(2005). 

5. Another SOO problem is formulated with 
joint displacement as the objective function 
and visual displacement as a constraint.  
Step 3 is repeated. 

 
TEST CASE #2 
 
For the second test case, a cab is loaded into Santos’ 
environment.  The presence of the cab allows target 
points to be specified as actual objects and not simply 
points in space.  The optimization problem involves 
additional objective functions, all weighted equally.  
While Test Case #1 is useful to study vision, the ultimate 



goal in posture prediction is to develop the most realistic, 
human-like postures.  Test case #2 uses more 
performance measures in the optimization formulation to 
create these more realistic postures.  The testing 
method for Test Case #2 is given below and is applied to 
all target points.  This method has been developed 
under the assumption that while inside the cab, typically 
one hand will be used to steer the vehicle and the other 
hand used to reach controls. 

1. A MOO problem is formulated with visual 
displacement, joint displacement, potential 
energy, discomfort, and effort as the 
objective functions.  This combination of 
objective functions was chosen because it 
created the most realistic postures.  These 
performance measures are explained in 
detail by Yang et al (2004).  

2. Both hands are placed on the steering wheel 
(this is the initial posture). 

3. The right hand end-effector is placed on a 
point inside of the cab while the left hand 
remains placed on the steering wheel. 

4. The target point for vision is set to the same 
point as the right hand in step 3. 

5. Predicted posture is visualized and 
performance measures are recorded. 

A MOO problem is created with joint displacement, 
potential energy, discomfort and effort as the objective 
functions.  Visual displacement is added as a constraint.  
Steps 2 through 5 are repeated. 

Figure 1: Location of Spine 1 joint (origin of all target points specified) 

The next section shows the results gathered from Test 
Case #1 and Test Case #2.  Images of actual postures 
as well as all performance measure data from the 
predicted posture are given. 
 

RESULTS 

TEST CASE #1 

This section offers a set of figures corresponding to the 
predicted postures from the methods described for Test 
Case #1.  Each figure has an associated table 
containing performance measure data, which provides a 
means for quantitative analysis.  For each figure, the 
leftmost posture (i) corresponds to the SOO problem of 
visual displacement, the middle posture (ii) corresponds 
to the MOO problem of visual displacement and joint 
displacement, and the rightmost posture (iii) corresponds 
to the SOO problem of joint displacement with visual 
displacement added as a constraint.  The coordinates of 
each target point are given in cm with respect to the 
SPINE 1 joint shown in Figure 1. 
 

 

Figure 2: Postures (i), (ii) and (iii) for Target 1 (-50, 31, 47). 

Before comparing performance measure values, we can 
determine a few things just by observing the postures in 
Figure 2.  One interesting observation is the similarity 
between Figure 2(ii) and Figure 2(iii), both of which are 
more realistic than Figure 2(i).  Because these postures 
are similar, there appears to be no difference between 
using visual displacement as an objective function and 
using visual displacement as a constraint.   
 
TABLE 1: Performance measure values for Target 1 

  Discomfort
Joint 
Disp. 

Pot. 
Energy 

Visual 
Acuity 

Visual 
Disp. 

(i) 114.73 44.0642 42.8298 1 0 
(ii) 29.4848 2.0065 18.7057 0.9999 0 
(iii) 29.3722 3.27 18.7082 0.9996 0.0001 
 

Analysis of Table 1 verifies the notion that for this target 
point, it makes no difference whether visual 
displacement is used as an objective function or as a 
constraint.  In all three cases, the vision performance 
measures, visual acuity and visual displacement, are 
never compromised.  The posture in Figure 2(i) has the 
elbow and shoulder placement too high, while the 
postures in Figure 2(ii) and Figure 2(iii) are more 
realistic.  The recorded values for effort, discomfort, joint 
displacement, and potential energy (non-vision-based 
performance measures) are all much higher for (i) than 
(ii) or (iii).  It is evident that using visual displacement for 
SOO is not advisable.  This is in agreement with the 
results of Marler et al (2006) and suggests that vision 
alone does not govern human posture. 
 



The next section shows postures and performance 
measure values for the second target point which is 
placed behind and to the right of SantosTM.  Coordinates 
from Spine 1 are given below. 
 

 
 

Figure 3: Postures (i), (ii) and (iii) for Target 2 (-35, 42, -30). 

TABLE 2: Performance measure values for Target 2 

  Discomfort 
Joint 
Disp. 

Pot. 
Energy 

Visual 
Acuity 

Visual 
Disp. 

(i) 417.2913 115.3472 69.5392 1 0 
(ii) 239.9239 12.2425 38.5606 0.9402 0.017 
(iii) 253.3507 13.617 40.7519 0.9996 0.0001 
 

The location of Target 2 is harder to see.  Consequently, 
it results in more uncomfortable postures.  Vision 
performance measures are fully optimized for Figure 3(i) 
but the remainder of the performance measures 
represents an uncomfortable posture.  Figure 3(ii) is a 
greater improvement in posture, but there is a gap 
between the vision vector and the end-effector (tip of the 
index finger).  Figure 3(iii) intersects the vision vector 
with the target point and is the most realistic posture for 
this target point.  It is evident from Table 2(ii) that while 
using visual displacement as an objective function 
results in realistic postures, the vision performance 
measures are not optimal.  In other words, SantosTM is in 
a relatively comfortable position, but he may not be able 
to see the target point clearly.  For this target point, 
constraining visual displacement yields optimal vision 
performance measures without greatly increasing non-
vision performance measures. 
 
The next section shows postures and performance 
measure values for Target 4, which is placed to the 
lower right side of SantosTM.  Coordinates from Spine 1 
are given below. 
 

 

Figure 4: Postures (i), (ii) and (iii) for Target 4 (-26, -31, -8). 

TABLE 4: Performance measure values for Target 4 

  Discomfort
Joint 
Disp. 

Pot. 
Energy 

Visual 
Acuity 

Visual 
Disp. 

(i) 327.8544 72.2613 45.8048 1 0 
(ii) 192.8271 3.1904 0.4406 0.9787 0.006 
(iii) 195.4342 3.6998 0.4841 0.9996 0.0001 
 
Again, for Target 4, (ii) and (iii) are similar except for the 
visual performance measures recorded in Table 4.  
Visual acuity and visual displacement are not fully 
optimized in (ii).  Table 4(iii) optimizes these 
performance measures while keeping non-vision 
performance measures low. 
 
Shown below are the postures and performance 
measure values for the final target of Test Case #1.  The 
target is placed behind SantosTM and to the right. 
 

 

Figure 5: Postures (i), (ii) and (iii) for Target 5 (-10, 10, -50). 

TABLE 5: Performance measure values for Target 5 

  Discomfort
Joint 
Disp. 

Pot. 
Energy 

Visual 
Acuity 

Visual 
Disp. 

(i) 509.8333 84.0687 43.7335 1 0 
(ii) 289.0023 23.6198 34.2463 0.2236 0.4168 
(iii) 437.9662 64.2671 34.7076 0.9996 0.0001 
 
The last target for Test Case #1 is used to justify the 
conclusion that when targets are in places behind the 
avatar, the differences between modeling vision as an 
objective function and as a constraint become much 
more noticeable.  In Figure 5(ii), the red vision vector is 
nowhere near the target.  With such a low value for 
visual acuity and such a high value for visual 
displacement, SantosTM cannot see what he is touching.  
The addition of eyeball movement could improve this.  In 
this case, there exists a noticeable change from (ii) to 
(iii), whereas when targets are placed in front of Santos, 
there is almost no change. 
 
A summary of findings from the results of Test Case #1 
is given next.   

• Vision alone does not govern human 
posture. 

• When target points are placed inside the 
initial field of view or in front of the avatar, 
there is little difference in using vision as an 
objective function or as a constraint. 

• Placing target points to the sides of 
SantosTM also show little difference in using 



vision as an objective function or as a 
constraint. 

• If the task requires visualization, then vision 
should be used as a constraint.  However, if 
the task does not require SantosTM to look at 
the target, then vision may be used as an 
objective function which results in more 
comfortable postures. 

• Based on Test Case #1 we find that the 
decision to use vision as an objective 
function or as a constraint depends upon the 
task.  We recommend that for tasks that 
require the avatar to look at the target, vision 
should be used as a constraint. 

• For tasks that do not require the avatar to 
look at the target, vision may be used as an 
objective function.  This method of using 
vision as an objective function results in 
more comfortable postures but vision is 
compromised. 

 
TEST CASE #2  
 
The remaining data was collected as part of the second 
test case using additional performance measures with 
multi-objective optimization.  In contrast, Test Case #1 
was designed to focus on visual displacement.  For each 
of the figures below, the posture on the left (i) is obtained 
from a MOO problem involving visual displacement, joint 
displacement, potential energy, discomfort.  The posture 
on the right (ii) is obtained from the MOO problem.  For 
(ii), visual displacement is added as a constraint.  All 
coordinates are given in cm with respect to Spine 1. 
 

 

Figure 6: Postures (i) and (ii) for Target 6 (-36.5147, 4.23067, 
31.9348). 

TABLE 6: Performance measures for Target 6, 
corresponding to the postures shown in Figure 6. 

  Effort Discomfort 
Joint 
Disp. 

Pot. 
Energy 

Visual 
Acuity

Visual 
Disp. 

(i) 4.4619 46.1995 3.4811 2.012 0.8783 0.0357
(ii) 4.5985 52.494 3.6209 2.0103 0.9996 0.0001
 
Postures and performance measure values for Target 9 
are given below.  Target 9 is chosen to determine how 
MOO with additional performance measures effects 
vision when targets are behind SantosTM.  

 

 

Figure 9: Postures (i) and (ii) for Target 9 (-35, 42,-30). 

Performance measures for Target 9, corresponding to 
the postures shown in Figure 9. 

  Effort Discomfort 
Joint 
Disp. 

Pot. 
Energy

Visual 
Acuity

Visual 
Disp. 

(i) 21.4364 175.6881 23.5481 10.7724 0.2949 0.3342
(ii) 25.8705 233.0832 26.1257 13.8415 0.9996 0.0001
 
Analysis of Figure 9 along with the data in Table 9 
indicates that introduction of more performance 
measures as objective functions results in a more life-
like posture but greatly affects the accuracy of vision.  
When vision is used as a constraint, the result is a more 
uncomfortable posture with a significant increase in 
visual accuracy; it allows SantosTM to precisely view 
what he is working with.  We can draw the following 
conclusions based on Test Case #2: 

• Using MOO with additional performance 
measures creates more life-like postures but 
compromises vision. 

• Vision can be used as either an objective 
function or a constraint when targets are in 
front of the avatar.  There is little difference 
in predicted postures and performance 
measure values. 

• For tasks that require clear visualization of 
target points behind the avatar, vision 
should be used as a constraint as this 
guarantees that SantosTM will see what he is 
working with. 

• For tasks that do not require visualization of 
target points behind the avatar, vision may 
be used as an objective function.  This 
formulation results in more comfortable 
postures but compromises vision. 

 

CONCLUSION 

 
This study investigates different ways of modeling vision 
and how it affects predicted posture.  The optimization 
formulations consisted of both single- and multi-objective 
optimization problems.  The first test case was 
developed in order to isolate the visual displacement 



performance measure.  A small number of objective 
functions, namely visual displacement and joint 
displacement, were used.  The data from this test case 
indicated that predicting posture using visual 
displacement alone does not yield natural postures.  
When joint displacement was coupled with visual 
displacement, there was significant improvement in 
posture realism.  However, when the target points were 
placed outside of the initial viewing space, SantosTM 
could not see them; the vision vector did not intersect 
the target point.  Using visual displacement as a 
constraint forced SantosTM to see what he was touching 
with minimal degradation in the non-vision-based 
performance measures. 
 
The second test case yielded more realistic postures 
through the use of additional objective functions.  
Instead of simply using visual displacement and joint 
displacement, as in Test Case #1, Test Case #2 
involved joint displacement, potential energy, discomfort.  
Although the realism of the predicted postures 
increased, the use of additional components in the MOO 
problem reduced the affect of the vision objective 
function.  However, for certain tasks, humans may 
simply try to look at a target but will not do so at the 
expense of another performance measures.  For these 
tasks, MOO should be used with a vision objective 
function 
 
We find that using vision as a constraint provides the 
same results as using vision as a performance measure 
when the target is relatively easy to see.  Differences in 
performance between the two approaches come when 
targets are relatively difficult to see.  When modeling 
human performance, this difference raises the question 
of when one absolutely has to see a target (possibly at 
the expense of other criteria) and when one simply 
makes an effort to see a target.  The answer depends on 
the task being modeled.  Certain tasks such as reading a 
book may not need to be modeled with vision as a 
constraint as overall comfort is of more importance.  
Other tasks which require visualization of harder to see 
targets may best be modeled with vision as a constraint.   
With the development of this new vision constraint, we 
are now able to model scenarios when one absolutely 
must see a target.  We can then study the 
consequences on other types of feedback, such as 
discomfort. 
 
Typically, with optimization-based methods, constraints 
are used as boundary conditions that impose restrictions 
not included in the model.  For instance, we do not 
actually model the complexities of each joint or the 
complex contact problem involved in bending a joint.  
Therefore, we apply joint limits as constraints.  In a 
sense, constraints are often used to define the 
boundaries of the model with respect to fidelity.  The 
objective functions are then used to study what 
motivates human behavior, given the problem 
assumptions inherent in the constraints.  In the case of 
vision, when boundary conditions must be imposed 
depends on the task being modeled. 

 
It is possible to vary Santos’sTM  anthropometry in order 
to represent various anthropometric cross sections.  
Such variation do, in fact result in variability in eth 
predicted postures.  However, with this study, 
anthropometry was fixed in order to isolate the affects of 
changes in the performance measure and/or constraints. 
 
One way to improve vision would be to add dynamic 
eyeballs to Santos.  With the target points above where 
vision performance measures are just slightly less than 
optimal, eyeball movement could reduce the sight angle 
(the angle between the vision vector and the target 
point).  Reducing the sight angle would improve the 
vision performance measures and would likely leave the 
non-vision-based performance measures unchanged.  
Additional future work involves optimizing visual 
displacement with upper limits on non-vision-based 
performance measures modeled as constraints.  As with 
the development of any predictive model, validation is 
critical.  Basic validation was conducted with the 
development of the initial performance measures and 
with posture-prediction capabilities in general (Marler et 
al, 2007; Yang et al, 2007).  Nonetheless, the validation 
process is ongoing and will continue.  This study 
involved subjective evaluation of postures, but more 
objective analyses will be conducted in the future.  
Finally, as discussed in Marler et al (2006), with the 
development of the vision performance measure used in 
this work, only one element of vision is considered, albeit 
the most critical element with respect to posture 
prediction.  Consequently, future work will involve 
additional components of a complete vision-based 
model. 
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