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ABSTRACT 

As predictive capabilities advance and human-model 
fidelity increases, so must validation of such predictions 
and models.  However, subjective validation is sufficient 
only as an initial indicator; thorough, systematic studies 
must be conducted as well.  Thus, the purpose of this 
paper is to validate postures that are determined using 
single-objective optimization (SOO) and multi-objective 
optimization (MOO), as applied to the virtual human 
SantosTM.  In addition, a general methodology and tools 
for posture-prediction validation are presented.  We find 
that using MOO provides improvement over SOO, and 
the results are realistic from both a subjective and 
objective perspective. 

INTRODUCTION 

As the field of human modeling and simulation builds 
momentum and as applications expand, increasing 
fidelity and autonomy becomes critical.  It is no longer 
sufficient to work with the simple likeness of a human 
either in regards to appearance or function.  Realism is 
now paramount.  The video game industry is addressing 
the issue of visual realism.  Thus, the demand for 
functional realism falls on the engineering-research 
community.  This trend begs the question of what 
constitutes being real?  What is acceptable with respect 
to fidelity?  The answer is validated predictive 
capabilities. 

A virtual human has many components and aspects that 
must be modeled, ranging from skin, to muscles, to 
cognition.  Ultimately, all of these aspects must be 
checked for realism; they must be validated.   When 
considering the complete human system, not just one 
section or organ, a fundamental component of any 
virtual human is posture prediction and analysis.  This is 
especially true given the expanse of current applications 
with vehicle analysis and design.  The Virtual Soldier 
Research (VSR) Program at The University of Iowa has 
pushed forward the field of posture prediction with the 

development of SantosTM, a new kind of virtual human 
(Yang et al, 2005; Yang et al, 2006b). 

With respect to posture and motion, SantosTM is 
predictive.  This means posture and motion are not 
based on prerecorded motion or data that must be 
updated with alterations in the virtual environment or 
with new desired types of motion.  Rather, SantosTM 
actually predicts how people strike various poses and 
how they move.  Such predictive capabilities afford the 
model considerable autonomy and stem in large part, 
from our optimization-based approach to human 
modeling.  Joint angles (one for each degree of freedom) 
provide the design variables that are determined by 
minimizing human performance measures such as 
discomfort, joint displacement, vision, and energy.  This 
computational optimization problem is solved while 
satisfying constraints that are used to model various 
tasks and anthropometric limitations.  This approach is 
extremely fast, allowing SantosTM to operate in real time, 
in most cases.  Because of our use of optimization, the 
number of degrees of freedom (DOF) used for the 
human model does not significantly impact 
computational speed.  Thus, our skeletal model currently 
includes 109 degrees of freedom, and it can easily be 
expanded without significant computational detriment.  
This model can be modified to represent any 
anthropometric cross section.  The high fidelity of the 
SantosTM model is also reflected in its appearance.  
SantosTM is not a cartoon.  His realism is superior, and 
this allows SantosTM to act as an actual design aid, a 
virtual human that can ultimately train and work with real 
humans. 

The performance measures, which serve as objective 
functions in the optimization problem, govern the motion 
and posture.  These performance measures are physics-
based, meaning they represent physically significant 
quantities; they are not functions derived from sets of 
data.  What governs one’s motion depends on the task 
being completed, and with the proposed approach, one 
is able to exchange performance measures, and thus 
model different kinds of behavior with what we call task-



based prediction.  A single performance measure can be 
used in a single-objective optimization (SOO) problem, 
or multiple performance measures can be combined 
using multi-objective optimization (MOO).  When 
modeling a task or class of tasks, we formulate a 
hypothesis as to which performance measure or 
combination there of governs that particular type of 
motion.  Then, the simulation is run and validated (the 
hypothesis is tested), and if necessary, the performance 
measure is modified (the hypothesis is refined).  The 
outcome is a general model that is not only complete 
enough to explain what drives a particular type of motion 
and how the human body works, but is also robust 
enough to accommodate modifications in the task 
scenario. 

The purpose of this paper is first to validate in-cab 
predicted upper-body postures that are obtained using 
SantosTM.  In general, there are essentially three stages 
to validation.  Stage 1 involves subjective visual analysis 
of simulated results.  Stage 2 involves basic motion-
capture studies with a limited number of human subjects.  
Stage 3 involves extensive experimental studies and 
statistical analysis.  This work involves Stages 1 and 2.  
Unless the initial hypothesis and consequent simulation 
are perfect, which rarely occurs in any scientific process, 
modifications must be made based on initial tests.  Thus, 
a second goal for this paper is to walk through the 
process of modifying performance measures, of using 
MOO, and of comparing SOO and MOO results.  Finally, 
this paper provides initial steps towards developing a 
systematic protocol for validating posture-prediction with 
a high-fidelity human model.  In this context, protocol 
does not just include experimental procedures; it 
involves methods for aggregating data and metrics for 
indicating successful simulations. 

Throughout this study, there are two primary 
assumptions.  First, we work only with an upper-body 
model that does not include hip motion.  Secondly, there 
is no cognitive model that might incorporate why one 
completes a task and might consequently refine how one 
completes a task. 

LITERATURE REVIEW 

Marler (2005), Marler et al (2005a), and Marler et al (in 
press) provide detailed reviews of optimization-based 
methods for posture prediction.  To date, there is no 
work that rigorously compares SOO results and MOO 
results.  With regard to predictive capabilities in general, 
much research has been conducted concerning 
applications to human modeling, and most predictions 
are, as a matter of the scientific method, validated or 
tested.  However, especially with regards to real-time 
high-fidelity models that use a large number of degrees 
of freedom, few thorough systematic validation studies 
have been conducted with posture prediction.  In 
addition, there has been little effort to devise a 
systematic methodology (sets of procedures and tools) 
for aggregating experimental and simulation data.  Here, 
we review some of the work that has been completed 

with validating 3-dimensional posture-prediction 
methods. 

A common approach to reaching-motion prediction 
involves using prerecorded motion, anthropometric data, 
and functional regression models in terms of joint angles 
(Farraway, 1997; Zhang and Chaffin, 1997; Chaffin et al, 
2000; Chaffin, 2002).  This provides analytical 
expressions for joint-angles as a function of time, from 
which individual postures can be extracted.  
Conceptually, because the output motion with these 
approaches is based on prerecorded motion, validation 
is not critical and is not discussed extensively.  
Technically, however, this approach is not always 
accurate with respect to constraints in Cartesian space 
and thus may not satisfy subjective validation reviews 
(Chaffin, 2002).  Consequently, Faraway et al (1999) 
provide a modification to this general approach that 
applies to posture prediction.  A posture is selected that 
is as close as possible to the initial data-based 
prediction, while satisfying restrictions in Cartesian 
space modeled with traditional inverse kinematics.  The 
translation between joint space and Cartesian space is 
completed using traditional inverse kinematics (using a 
pseudoinverse of the Jacobian).  The approach is 
validated using one human subject and a seven-DOF 
model for upper-body reach.  Visual validation is 
conducted using a stick-figure diagram, and objective 
validation is conducted by comparing joint-center 
locations. 

The first efforts with predicting posture without observed 
data involved the pseudo-inverse method of inverse 
kinematics.  Liegeois (1977), and Klein and Huang 
(1983) apply this approach to simple robots and thus 
need no validation.  Jung et al (1995) apply this 
approach to human reach-posture prediction with an 
eight-DOF model.  It is validated using five human 
subjects.  Stick figures representing some of the 
subjects and corresponding predictions are compared 
subjectively.  Mean values for the elbow and shoulder 
joint angles, and for the location of the joint centers are 
validated objectively.  Zhang et al (1998) incorporate 
optimization in a weighted pseudo-inverse approach with 
a seven-DOF human model, whereby the weights are 
determined such that the predicted motion approximates 
empirical data (prerecorded motion).    This approach 
depends on a specified hand motion trajectory.  Different 
schemes for setting the weights are evaluated, and the 
results seem to be validated using the same empirical 
data that are used for developing the model.  Predicted 
and experimental joint-angle profiles (motion) are 
compared subjectively.  Zhang and Chaffin (2000) use 
this same approach and model, with a more extensive 
validation effort.  The authors use ensemble errors 
averaged over time (over the complete motion) and over 
multiple joint angles.  These errors represent angle, 
velocity, and displacement, and they provide a method 
for aggregating motion-prediction data for the complete 
human model.  In addition, joint-angle profiles are 
compared subjectively.  Reed et al (2000) also combine 
the use of optimization and experimental data by using 



an optimization prediction model with three DOFs to find 
a posture that approximates the data most accurately.  
The proposed method is validated subjectively against 
the Cascade prediction model (CPM), using stick figures.  
Predicted eye locations are validated objectively with 
experimental data. 

Wang and Verriest (1998), and Wang (1999) propose a 
geometric algorithm for arm posture prediction and apply 
it to a 4-DOF and 7-DOF model respectively.   The 
models are validated by comparing the distance 
between the predicted position of the elbow and the 
actual/experimental position. 

Zhao and Badler (1994) provide one of the earliest 
works with the direct independent use of optimization for 
posture prediction, with a 22-DOF full-body virtual 
human.  Riffard and Chedmail (1996) use a similar 
approach with a seven-DOF arm.  However, these works 
do not involve any formal validation, just subjective 
visual evaluation.  Mi et al (2002) use direct optimization 
as well with a 15-DOF upper-body model.  Subjective 
validation is conducted by comparing simulation results 
with photographs of a single human subject.  To date, 
the proposed optimization-based method used with 
SantosTM has been validated by subjectively comparing 
simulated results with single-subject motion-capture data 
(Farrell et al, 2005; Marler et al, 2005a; Marler et al, 
2006). 

Much of the current literature involves models with 
relatively small numbers of DOFs.  There are few 
consistent systematic methodologies for aggregating 
visual postures as well as objective simulation data.  
Although most predictive studies involve validation of 
some sort, there are few extensive validation efforts and 
little consensus regarding tenants for evaluating 
predictive results.  Finally, there is little discussion of the 
anthropometric cross sections considered in the 
experimentation. 

With respect to optimization-based posture prediction, to 
date, validation for the proposed approach has been 
limited to visual inspection and motion-capture 
experiments with a small number of subjects.  In 
addition, although MOO has been used, the details of 
how various performance measures should be 
combined, has not been investigated.  Although Marler 
et al (in press) compare various MOO results with SOO 
results using subjective visual comparison of predicted 
postures, a more extensive validation effort is needed. 

OVERVIEW OF THE PAPER 

In this paper, we first summarize the human model, 
initial baseline simulations, and the motion-capture 
experimental protocol.  Then, simulation results using 
SOO are compared to experimental results, and the 
motivation for using MOO is highlighted.  The process 
used to determine which performance measures should 
be combined is outlined, and the consequent simulation 
results using MOO are studied and compared to those 

from SOO.  Although only examples of results are 
shown, all results are discussed.  More extensive 
discussions of statistical analysis are provided in a 
companion paper (Yang et al, 2007).  In conclusion, we 
present the significant findings with respect to validating 
predicted posture, and we itemize data-analysis tools 
and metrics.  Finally, we summarize potential areas for 
future work. 

HUMAN MODEL 

This section summarizes our human model (Figure 1) 
and our approach to posture prediction, both of which 
are discussed by Yang et al (2006a) and Abdel-Malek et 
al (2006). 

 

Figure 1: The Virtual Human SantosTM 

SKELETAL MODEL 

Simulating human posture depends largely on how the 
human skeleton is modeled.  We view a skeleton as a 
series of links with each pair of links connected by one 
or more revolute joints.  Therefore, a complete human 
body can be modeled as several kinematic chains, as 
shown in Figure 2. 

iq  is a joint angle and represents the rotation of a single 
revolute joint with respect to a local coordinate system.  
There is one joint angle for each DOF.  

[ ]1 , ,
T n

nq q R= ∈q K  is the vector of joint angles in an n-

DOF model and represents a specific posture.  Each 
skeletal joint is modeled using one, two, or three 
kinematic revolute joints.  ( ) 3∈ Rx q  is the position vector 

in Cartesian space that describes the location of the 
end-effector as a function of the joint angles, with 



respect to the global coordinate system.  For a given set 
of joint angles q, ( )x q  is determined using the Denavit-

Hartenberg (DH)-method (Denavit and Hartenberg, 
1955).  The DH-method essentially allows one to work 
with either joint space or Cartesian space. 

With this study, a 35-DOF model for the human torso, 
right arm, left arm, and neck is used as shown in Figure 
1, where each cylinder represents a rotational DOF. 
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Figure 2: A Kinematic Chain of Joints 

POSTURE-PREDICTION APPROACH 

The posture of the above-described model is determined 
by solving the optimization problem developed at VSR 
and formulated in this section.  The design variables for 
the problem are iq , measured in units of radians. 

The first constraint, called the distance constraint, 
requires the end-effector to contact a target point.  In 
addition, each joint angle is constrained to lie within 
predetermined limits.  U

iq  represents the upper limit for 

iq , and L
iq  represents the lower limit.  These limits are 

derived from anthropometric data.  Given the nature of 
the DH-method and transformation matrices used 
therein, it s also possible to constrain the orientation of 
various local coordinates systems. 

The basic benchmark performance measure represents 
joint displacement (Jung et al, 1994; Mi et al, 2002).  
This performance measure is proportional to the 
deviation from the neutral position, which is selected as 
a relatively comfortable posture, typically a standing 
position with arms at one’s sides.  N

iq  is the neutral 
position of a joint.  Because some joints articulate more 
readily than others, a weight iw  is introduced to stress 
the relative stiffness of a joint.  The final joint 
displacement is given as follows: 

 ( ) ( )2

1

n
N

JointDisplacement i i i
i

f w q q
=

= −∑q  (1) 

Additional performance measures are also used.  In fact, 
the primary performance measure for this study is 
discomfort (Marler et al, 2005a), which is loosely based 
on joint displacement.  It models musculoskeletal 
discomfort and involves three factors: the tendency to 
gravitate to a reasonably comfortable position, the 
tendency to move body segments in sequence (i.e. 
move the arm, then the torso if necessary, and then the 
clavicle), and the tendency to avoid postures where 
ligaments and/or tendons are stretched.  We also use 
visual displacement, which essentially models the 
tendency to align one’s line of site with the object being 
touched or used (Marler et al, 2006).  Finally, we 
consider potential energy, with the datum for each body 
segment defined separately as the height of that 
segment when the body is in the neutral position (Marler 
(2005). 

The optimum posture for the system shown in Figure 2 is 
then determined by solving the following problem: 

Find: DOFR∈q  (2) 

to minimize: ( )Performance Measure q  

subject to: ( )end-effector target pointdistance ε= − ≤x q x  

;  1, 2, ,L U
i i iq q q i DOF≤ ≤ = …  

where ε  is a small positive number that approximates 
zero.  (2) is solved using the software SNOPT (Gill et al, 
2002), which uses a sequential quadratic programming 
algorithm.  Analytical gradients are determined for all 
objective functions and for all constraints. 

BASELINE SIMULATION STUDY 

The first part of the overall validation effort is a baseline 
study to verify that predictive results are visually 
reasonable and to provide a baseline of SOO-based 
predicted postures to which additional results are 
compared.  Reach targets that represent common 
scenarios in an automotive cab are used for posture 
prediction and are shown in Figure 3. 

Target 1 represents the A-pillar.  Target 2 represents the 
radio.  Target 3 represents the glove box.  Target 4 
represents the B-pillar, where a seat belt is typically 
found.  Discomfort is used as the performance measure 
in equation (2).  Data are recorded in terms of joint 
angles, visual postures, and location of markers on 
Santos’sTM skin.  With regards to the markers, the intent 
is to experiment with leveraging Santos’sTM highly 
realistic skin model.  Only the right arm is considered.  
Anthropometry (in the form of skeletal dimensions) is 
used that represents approximately a 50th percentile 
male.  Selected views of visual results with all of the 
targets are shown in Figure 4.  The small dots indicate 



points on the avatar’s skin where position is recorded.  
The larger dot represents the target. 
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Figure 3: Target Points in an Automotive Cab 
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Figure 4: Visual Results for Baseline Study, using Discomfort 

In general, the visual results suggest that the postures 
predicted using SantosTM are realistic, and using 
discomfort for the given targets is appropriate.  Although 
results with target 4 are different from what one might 
expect, they are reasonable given the nature of the 
discomfort model.  That is, the predicted postures yield a 
relatively comfortable position, but they do not 
incorporate one’s tendency to see what one is working 
with.  Initial use of MOO to combine vision with 
discomfort improves the results (Figure 5) and provides 

motivation for investigating further use of MOO with this 
study. 

Target 4bTarget 4b

 

Figure 5: Using MOO to Combine Discomfort and Vision 

We find that tracking markers on the avatar’s skin is 
problematic.  Transferring marker location between 
different avatars or between avatars and experimental 
subjects is impractical.  Initial results suggest it is easier 
to track the locations of joint centers. 

This baseline study sheds light on the following 
components that are not factored in the simulation model 
and thus require either a more extensive model or 
additional boundary conditions applied to the model: 1) 
the tendency to strive to see what one is working with, 2) 
the tendency to move one’s hip, and 3) the cognitive 
awareness of why one reaches for a particular target. 

MOTION-CAPTURE EXPERIMENTS 

Given the successful results with Stage 1 validation, we 
proceed with Stage 2 validation, which involves 
experimental motion-capture studies.  These 
experimental results provide the gold standard for this 
study, to which subsequent simulations are compared.  
The fundamentals of the experimental protocol are 
outlined as follows. 

Thirteen subjects are used in a modified cab.  Their 
postures are recorded using motion-capture as they 
reach for the four targets.  Neck and head motion is not 
recorded, although it is shown in photographs.  The 
subjects represent the following anthropometric cross 
sections: fifth percentile females, fiftieth percentile 
males, fiftieth percentile females, and ninety-fifth 
percentile males.  At the beginning of each test, the 
subject is instructed to sit in the seat, buckle a two-point 
belt, adjust the seat in a comfortable location, and put 
his/her feet on the brake and gas pedals.  The subjects 
first place their hands on the “ten and two” positions of 
the steering wheel.  This also provides the final position 
for the arms (after a specified target has been touched). 

Each test condition (a specific subject reaching for a 
specific target) is repeated for five trials.  Thus, a total of 
20 trials are run (five trials for each of four targets).  The 



subjects are provided 1 minute breaks between repeated 
test conditions in an attempt to minimize fatigue and 
changes in awareness between conditions.  For each 
subject, the average (over all trials) position (x-, y-, and 
z-components) of the joint centers, and the average 
elbow angle are determined.  It was found that the five 
tests for each subject produced similar results, 
suggesting that with studies such as this, extensive 
repetitions are not necessary.  For data analysis, one of 
the five cases was selected randomly. 

Throughout the validation efforts, the subjects are 
labeled to indicate the gender, percentile, and subject 
number.  For example, S05F1 represents 5th percentile 
female subject number one. 

For motion-capture, an 8-camera Vicon Motion Analysis 
System is used.  Passive markers are attached to the 
subject and to the surrounding environment (steering 
wheel, seat, target points, etc.).  Because of the 
complexity of the scenario, a marker protocol was 
developed with approximately 50 markers and 
substantial redundancy, in order to track motion and to 
identify joint-center locations. 

Numerical data are recorded in terms of the location of 
joint centers for the wrist, elbow, and shoulder, as well 
as the angle in the elbow.  Visual results are also 
recorded for each posture. 

Anthropometry for the simulation model represents each 
individual subject, and the approximate anthropometry 
for each subject is determined using the motion capture 
system. 

SINGLE-OBJECTIVE SIMULATION STUDY 

Given an outline of the experimental procedure, this 
section describes the simulation procedure and the 
results.  This constitutes the first test of the hypothesis 
that optimization-based posture prediction can be used 
with discomfort as a performance measure (in equation 
(2)), to predict in-cab reaching postures.  With each 
subject, the predicted postures are compared to the 
experimental postures using visual comparison; joint 
center location for the clavicle, shoulder, elbow, and 
wrist; and elbow angle.  These specific quantities were 
selected judiciously to represent the posture of the 
complete upper body without having to track every joint 
angle and every joint center location.  This represents a 
key premise of this work, that posture can be validated 
using a limited number of parameters. 

Examples of quantitative results are shown in Figures 6 
through 9 for a few different subjects.  The plots indicate 
the difference between the experimental and simulated 
values for the elbow angle, and for the Cartesian 
positions for the various joint centers.  An example of 
visual results is shown with Target 4 in order to highlight 
issues surrounding discomfort. 
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Figure 6: SOO Results for Target 1 with a 5th Percentile Female 
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Figure 7: SOO Results for Target 2 with a 50th Percentile Male 
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Figure 8: SOO Results for Target 3 with a 50th Percentile Male 

Based on qualitative analysis, especially with Targets 1 
through 3, all of the predicted postures using discomfort 
appear to be reasonable relative to the experimental 
postures.  That is, with most cases, SantosTM used a 
posture similar to that of the corresponding subject.  

Based on quantitative analysis, as demonstrated with 
the plots above, differences between experimental and 
predicted results are significant.  This reinforces the idea 
that subjective validation, although necessary, is not 
sufficient for developing a robust predictive model.  The 
differences are attributed to the following issues, some 
of which surfaced with Stage 1 validation as well.  First, 
there are minor inaccuracies in anthropometry, 
stemming both from the model itself and from the 
inability to extract precise joint-center data from any 
motion-capture system.  Secondly, a lack of hip motion 



contributed to cases where SantosTM was not able to 
contact the target.  Finally, there are differences 
between modeling discomfort, which is the only 
performance measure used thus far, and modeling 
actual human performance, which may involve vision 
and cognition.  This is especially evident with Target 4.  
As discussed with respect to Stage 1 validation, using 
MOO to combine discomfort with additional performance 
measures, especially vision, will yield improved results. 
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Figure 9: SOO Results for Target 4 with a 95th Percentile Male 

This validation study highlighted the following topics for 
future work: 

1) With all motion-capture systems, there is inherent 
error when translating anthropometric data from 
human subjects, to motion-capture systems, and 
then to simulation models.  Improvements in this 
process will likely require significant research and 
development efforts. 

2) Joint torque should eventually be incorporated in the 
discomfort model. 

3) New methods for aggregating experimental and 
prediction data are needed. 

4) The subjects’ environment should be incorporated in 
the simulation as much as possible.  Where 
components of the environment are not modeled, 
appropriate boundary conditions must be 
incorporated in the human model.  Although we only 
use an upper-body mode, it is insufficient to have 
SantosTM standing when modeling seated tasks. 

MULTI-OBJECTIVE SIMULATION STUDY 

PROCEDURE 

Typically, any validation effort involves refinement in the 
model.  Therefore, the general focus of this portion of the 
validation effort is the simulation.  Based on the results 

discussed above, we now refine the posture-prediction 
model and consider the following issues.  1) SantosTM is 
placed in an actual vehicle with his left hand holding the 
steering wheel, thus allowing him to interact with the 
environment.  This involves the use of a 35-DOF upper-
body model that includes both arms (Farrell et al, 2005).  
That is, posture prediction is completed for the torso, 
neck, left arm, and right arm simultaneously.  2) Methods 
for aggregating experimental and posture-prediction data 
are developed.  3) MOO is used to combine additional 
performance measures with discomfort. 

The following primary steps are taken with this portion of 
the study. 

1) Individual performance measures are tested.  This is 
done subjectively by comparing predicted postures 
using default anthropometry, with general posture 
strategies indicated by motion-capture.  These tests 
are run using discomfort, joint displacement, and 
energy with all of the targets. 

2) Joint limits and neutral positions are tested.  This is 
done subjectively by comparing experimental results 
for subject S50M3 to simulation results that are 
obtained using two different sets of joint limits and 
two different neutral positions, with each target.  The 
first set of joint limits represents the original default 
limits for SantosTM.  The second set of limits are 
determined based on a combination of published 
data (Rothstein et al, 1998), input from an expert in 
physical therapy and rehabilitation science, and 
experimentation with the current avatar.  The two 
neutral positions represent a relaxed stance and a 
seated position. 

3) Using subject S50M3 with fixed joint limits and a 
fixed neutral position from step 2),  subjective 
experiments are run to determine which weights are 
most effective when using MOO to combine 
discomfort, visual displacement, and energy; and 
again when combining joint displacement, visual 
displacement, and energy.  Discomfort and joint 
displacement are not combined, because discomfort 
is based in part on joint displacement (Marler et al, 
2005a). 

4) Posture prediction results are recorded for the 
following subjects using the weights determined for 
each target in step 3): S50M3, S05F3, S50F3, and 
S95M1. 

MOO BASICS 

MOO is a subfield of optimization that addresses the 
issue of how one considers multiple objective functions 
simultaneously.  It has been incorporated with the VSR 
approach to posture prediction with in various capacities.  
Marler et al (in press) use it to develop performance 
measure and to combine performance measures with no 
articulation of preferences.  Marler et al (2005b) use 
MOO with a posteriori articulation of preference, 
depicting Pareto optimal sets with posture prediction.  
Here, a priori articulation of preferences is used to 



indicate to what extent various performance measures 
are considered. 

There are many methods for combining objectives and 
articulating preferences as to which objectives are more 
important (Marler and Arora, 2004).  We use the 
following global criterion, based on work by Marler 
(2005): 
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if  represents a performance measure, and a 
superscript of Max indicates the maximum possible 
value for the performance measure.  Note that the 
maximum value of a performance measure depends on 
the target and the distance constraint in equation (2).  
Thus, in this case, the maxima are determined 
analytically considering the complete reach envelope (all 
possible targets).  1w  and 2w  are weights representing 
the relative importance of the two performance 
measures. 

RESULTS 

Step 1 – Test Individual Performance Measures 

The primary outcome from the tests on the individual 
performance measures was a modification to the 
discomfort model.  First, the penalty that is applied as 
joints reach their limits, in cases when ligaments or 
tendons are stretched, was modified.  Secondly, the 
sequence in which different body segments are 
articulated was altered.  Initially, the model was 
designed such that one moves their arm to touch a 
target.  If necessary, one then articulates the spine.  
Finally, one extends the clavicle.  However, we find that 
a critical component of modeling upper body posture is 
proper modeling of the shoulder system.  The motion 
and the joint limits in the shoulder joint and clavicle joint 
should be coupled, and changes in the discomfort model 
compensate for the lack of coupling.  Thus, the new 
discomfort function models the following sequence of 
segment motion: arm, forward motion in the clavicle, 
back, upward motion in the clavicle. 

Step 2 – Test Joint Limits and Neutral Positions 

Given refined performance measures, the joint limits and 
the neutral positions are tested.  The comparison of the 
two sets of joint limits suggests that the new joint limits 
should be used.  We find that the two neutral positions 
(seated and standing) result in similar predictions, so we 
continue to use the standing neutral position. 

Step 3 – Weights for Multi-objective Optimization 

Using subject S50M3, MOO weights are determined.  
Then, in the next step these weights are used with 
additional subjects.  The ideal MOO weights using 

discomfort are determined as follows for Targets 1, 2, 3, 
and 4 respectively: (d,v,e)=(1,1,0), (d,v,e)=(1,1,.01), 
(d,v,e)=(1,1,0), (d,v,e)=(.6,1,0), where d represents the 
weight for discomfort, v represents the weight for vision, 
and e represents the weight for energy.  The ideal 
weights using joint displacement were determined as 
follows, again for Targets 1, 2, 3, and 4 respectively: 
(jd,v,e)=(1,.03,0), (jd,v,e)=(1,.15,0), (jd,v,e)=(1,1,1), 
(1d,v,e)=(1,1,1), where jd represents joint displacement. 

In general, the best combination of performance 
measures included a weight of 1 for discomfort, a weight 
of 1 for visual displacement, and a small weight 
(approximately 0.01) for energy.  The most effective 
weights were similar for all targets, with the exception of 
Target 4, which requires boundary conditions that are 
not yet considered in the model. 

In order to compare the results with different 
performance measures and combinations there of, we 
compiled data using what we call method plots.  These 
plots are given in Figures 10 through 13.  Each bar in 
each plot indicates the distance between the joint center 
determined with experimentation, and the joint center 
determined with simulation.  The smaller plots indicate 
the difference between the elbow angles determined 
with experimentation and the elbow angle determined 
with simulation. 
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Figure 10: Optimization Method Plot for Target 1 
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Figure 11: Optimization Method Plot for Target 2 
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Figure 12: Optimization Method Plot for Target 3 
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Figure 13: Optimization Method Plot for Target 4 

There is a quantitative and qualitative improvement in 
the predicted postures when the new discomfort function 
is used with MOO.  In addition, using MOO with 
discomfort provides superior result to using MOO with 
joint displacement.  The method plots indicate that the 
position of the joint center for the wrist most closely 
matches the experimental results.  This is because the 
wrist is relatively close to the end-effector.  
Consequently, we find that it is more appropriate to track 
only joint centers that are further away from points 
affected by constraints (i.e. the constraint that requires 
the end effector to contact the target). 

Because the best results are obtained using the new 
discomfort function with MOO, the corresponding 
postures are given in Figures 14 through 17.  The 
pictures determined using the new discomfort function 
with MOO also include a line of site.  These results are 
compared to the SOO results involving the previous 
version of discomfort, and to the experimental results. 

The following issues were noted with the experiments 
under step 3.  Using energy lowered the elbow to a more 
realistic position, but using too much energy resulted in 
too much bend in the wrist.  Thus, the overall strategy in 
setting the weights was to start with the discomfort 
weight at 1, increase vision as much as possible, and 
then increase energy until the wrist orientation became 
unrealistic. 
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Figure 14: Visual Results for Target 1 
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Figure 15: Visual Results for Target 2 
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Figure 15: Visual Results for Target 3 
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Figure 16: Visual Results for Target 4 



With Target 2, using discomfort alone resulted in an 
elbow that was too high and a shoulder that was too far 
forward.  Correcting both errors is impossible.  This is 
because with a constant target location, moving the 
shoulder back tends to raise the elbow.  Joint 
displacement provided results similar to those obtained 
with discomfort but with excessive arm rotation. 

With Target 3, considering that there is no hip motion in 
the simulation, the posture-prediction problem no longer 
concerns finding the optimal posture.  Rather, it simply 
involves finding a feasible posture.  Therefore, changing 
the weights has only subtle effects on the consequent 
posture.  With every case/method, the elbow angle is 
always at its minimum value. 

With Target 4, using a vision weight of 1 results in the 
eyeball contacting the target.  This suggests that focal 
length should be incorporated in the vision model.  It is 
especially evident with Target 4 that discomfort is 
sensitive to the joint limits, since a penalty is applied as 
joints approach their perspective limits. 

Step 4 – Test MOO Settings with Additional Subjects 

The weights determined with step 3 are applied to 
additional subjects, and the same improvement that 
using the new discomfort function with MOO provided in 
step 3) was seen with the additional subjects.  Method 
plots were compiled for each subject-target test, 
although they are not included here. 

During the motion-capture experiments, it was noted that 
the smaller subjects (fifth percentile and fiftieth percentile 
females) tended to rotate the steering wheel, thus 
moving their left hand downward.  They also rotated their 
hips considerably when reaching for Target 4.  Thus, in 
the corresponding simulations, the left hand was not 
constrained to the steering wheel.  Essentially, a 
boundary condition was altered. 

In many instances, the simulated vision ray, which 
indicates where exactly SantosTM is looking, does not 
intersect the target precisely, although it always comes 
close.  This is because visual displacement is used as 
an objective function, which may or may not obtain its 
absolute minimum value when incorporated in a MOO 
formulation.  This suggests that visual discomfort should 
be tested as a constraint. 

Given the large amount of data collected for step 4, the 
question arises as to how one consolidates this data and 
how one develops metrics for validation.  With step 3) 
we introduced method plots as one tool for validation.  
With step 4), we use two additional new tools for 
validation.  The first is a set of joint plots given in Figures 
17 through 20, in order to aggregate validation data and 
compare it to simulation data.  The first three plots 
involve the Cartesian coordinates for three joint centers, 
and the fourth plot involves elbow angle.  One subject 
was selected randomly from each percentile, and all 
targets were considered with the resulting four subjects. 
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Figure 17: Joint Plot for Wrist Data 
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Figure 18: Joint Plot for Elbow Data 
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Figure 19: Joint Plot for Shoulder Data 
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Figure 20: Joint Plot for Elbow-Angle Data 

These plots contain a wealth of information.  The degree 
of scatter around any given trend line (there is one trend 
line for each coordinate) indicates the degree of 
precision, and R2 is a metric for such precision.  We 
strove for R2>0.7, and this requirement is satisfied in all 
cases.  The correlation of a trend line with the red 45-
degree line indicates accuracy.  A trend line that is 
parallel to the 45-degree line suggests that although the 
data may not be completely accurate, the simulation is 
consistent across all targets and all subjects.  
Alternatively, a trend line that is skewed relative to the 
45-degree line suggests that there are inconsistencies in 
the simulation between various targets and/or various 
subjects.   Currently, there are no hard-and-fast limits for 
the correlation of trend lines to the 45-degree line, but 
subjective evaluation of such correlation provides 
significant insight. 

In general, the joint plots suggest successful validation 
of posture prediction capabilities.  In the cases when 
there is some lack of accuracy, it tends to be because 
simulated Y- and Z-values are too high.  Note that the Y-
axis points from the hip up towards the head, and the Z-
axis points from the hip forward away from the body.  
Predictions along the X-axis are relatively accurate.  The 
wrist joint is the most accurate.  This is because the wrist 
joint-center is closest to the end-effector and essentially 
follows the end-effector, and the end-effector is 
constrained to contact the target.  The trend lines for the 
elbow joint center are offset from the 45-degree line, but 
they are parallel to the 45-degree line.  Although there is 
some inaccuracy, the predictions are consistent.  
Alternatively, the trend lines for the shoulder are 
somewhat skewed relative to the 45-degree line, 
suggesting inconsistencies in the model.  In fact, as 
discussed earlier, coupling of the motion and limits in the 
shoulder system constitutes critical future work. 

Often, regression analysis can be misleading.  However, 
rather than provide extensive statistical analysis, the 
intent here is to develop methods for aggregating data.  

Yang et all (2007) provide a more extensive 
consideration of statistical analysis issues, and discuss 
confidence intervals associated with the regression 
analysis. 

In addition to the method plots and joint plots discussed 
above, we also develop a method for testing the overall 
posture strategy using what we call task plots.  Example 
task plots are shown for Target 2 in Figures 21 through 
23.  While the joint plots are used to aggregate 
numerical data, these plots are used essentially to 
aggregate visual postures. These plots average the joint-
center positions for multiple subjects, showing arm 
postures from different views.  As with the joint plots, 
one subject was randomly selected from each percentile, 
and all targets are considered with the resulting four 
subjects. 

The coordinates for the joint centers, shown in the plots, 
are averages of values that have been normalized by the 
height of the subjects.  The data are normalized so that 
the plots can represent multiple subjects.  However, 
because the coordinates were normalized, the 
dimensions indicated with the axes in the plots have no 
physical significance.  Nonetheless, these plots are 
useful for comparing posture strategies. 
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Figure 21: Task Plot for Target 2, Front View 
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Figure 22: Task Plot for Target 2, Top View 
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Figure 23: Task Plot for Target 2, Side View 

Generally, the simulations and experimental results 
indicate similar posture strategies, with all targets.  With 
Target 1, however, the elbow is predicted to be slightly 
higher than the shoulder.  With Target 3, the arm is 
predicted as being nearly fully extended.  As discussed 
previously, because there is no hip motion in the 
simulation model, touching Target 3 is a matter of simply 
determining a feasible posture rather than an optimal 
posture; there is little redundancy in the system. 

CONCLUSION 

In this paper, we have outlined an approach to validating 
predicted postures.  This involves an overall 
methodology, experimental protocol, and tools for 
aggregating data.  This approach was used with upper-
body reach-type posture prediction an automotive cab, 
with SOO-based and MOO-based posture prediction. 

Some of the primary contributions of this study are 
findings, development of tools, and identification of 
metrics relevant to validation of posture prediction.  
These components are listed as follows: 

1) We have shown that human posture can be 
validated using a few select markers or components, 
rather than tracking every joint or every degree of 
freedom. 

2) It is best to track joint angles and the location of joint 
centers, not markers on the skin.  Joint centers that 
are not tied, directly or indirectly, to constraints in the 
model are preferable. 

3) The markers and components that are tracked 
depend on the task.  For instance, validating walking 
requires different markers than validation for upper-
body reaching. 

4) Posture can not be validated precisely because of 
inaccuracies in model and motion-capture systems 
and, more importantly, because of inherent 
variability in human performance.  The latter stems 
from personal history and cognitive differences.  
However, one can ensure that predicted postures 
are within a reasonable range, an envelope of 

acceptability.  In addition, one can validate posture 
strategy. 

5) One should use both subjective and objective tools 
for validation.  As useful as quantitative metrics are, 
there is no substitute for visually comparing 
postures. 

6) In addition to visually comparing postures, the 
following new tools have been developed for 
aggregating posture-prediction and experimental 
data: method plots, joint plots, and task plots. 

7) Solid criteria relating to the method plots and relating 
to the trend lines’ relationship to the 45-degree line 
on the joint plots need to be developed.  R2 should 
be greater than 0.7 with the joint plots.  As are the 
visual postures, the task plots are for subjective 
evaluation. 

Throughout this work the idea of boundary conditions 
surfaced with respect to the human model.  In cases of 
product design, it is not sufficient to model just the 
human body; one must consider how the human body 
interacts with the environment.  This in turn requires that 
one clearly define what exactly is modeled, and what 
constitutes the system being studied.  Boundary 
conditions define the boundaries of the model.  They 
approximate behavior of components that are not 
actually modeled. 

Another key component of human modeling that often 
requires approximations is anthropometry.  If one 
intends to validate predicted postures precisely, there 
must be a precise match between the anthropometry of 
the human subject(s) and the simulation model.  
However, because of current limitations in motion-
capture technology, such precision is not possible.  
Thus, one should use subjective validation simply to 
validate posture strategies and general approaches to 
various tasks.  Objective validation should be completed 
with the understanding that results must fall within a 
margin of error. 

When determining appropriate weights for MOO, the 
issue of how one distinguishes a “task” surfaced.  The 
premise of task-based simulation is that we are able to 
model the differences in behavior that different tasks 
demand.  This is done by using different performance 
measures.  However, if hypotheses must be tested and 
optimization formulations must be altered too often, the 
advantages of actually predicting posture subside.  With 
this work, we view the task being addressed as 
reaching.  Each target does not constitute a different 
task.  In fact, the MOO weights were similar for most of 
the targets. 

This work focused primarily on analysis across 
percentiles.  That is, with the joint plots and task plots, all 
targets were considered for subjects from all of the 
percentiles.  As future work, we will also consider 
multiple subjects from the same percentile, thus adding 
a second dimension to the analysis.  Finally, it will be 
necessary to consider joint plots for a single target, 
adding the third and final dimension to the validation 



work.  Yang et al (2006) summarizes this idea of multi-
dimensional validation. 

Based on the consideration of various boundary 
conditions and the idea that model modification must 
typically accompany validation, a variety of potential 
areas for future work have surfaced with regard to the 
human model.  In terms of experimentation, a gold 
standard of some sort, external to this study, needs to be 
identified for comparison with both experimental and 
simulation results.  With respect to the human model, hip 
motion should be incorporated, and the shoulder model 
must be extended to involve coupled motion and limits 
between the shoulder and clavicle.  Cognitive modeling 
must also be considered, although the application of 
cognitive modeling to gross human posture and motion 
is just now beginning to see progress.  The vision model 
should be augmented so that focal length is considered 
and so that vision can be modeled as a constraint rather 
than just a performance measure.  Obstacle avoidance 
and self-avoidance capabilities must be developed 
further.  Finally, the accuracy with which joint-center 
positions can be extracted from motion-capture data 
must be improved.  All of this work is ongoing at VSR. 
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