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SUMMARY
Posture prediction plays an important role in product design
and manufacturing. There is a need to develop a more
efficient method for predicting realistic human posture.
This paper presents a method based on multi-objective
optimization (MOO) for kinematic posture prediction and
experimental validation. The predicted posture is formulated
as a multi-objective optimization problem. The hypothesis is
that human performance measures (cost functions) govern
how humans move. Twelve subjects, divided into four
groups according to different percentiles, participated in the
experiment. Four realistic in-vehicle tasks requiring both
simple and complex functionality of the human simulations
were chosen. The subjects were asked to reach the four
target points, and the joint centers for the wrist, elbow, and
shoulder and the joint angle of the elbow were recorded using
a motion capture system. We used these data to validate
our model. The validation criteria comprise R-square and
confidence intervals. Various physics factors were included in
human performance measures. The weighted sum of different
human performance measures was used as the objective
function for posture prediction. A two-domain approach
was also investigated to validate the simulated postures.
The coefficients of determinant for both within-percentiles
and cross-percentiles are larger than 0.70. The MOO-based
approach can predict realistic upper body postures in real
time and can easily incorporate different scenarios in the
formulation. This validated method can be deployed in the
digital human package as a design tool.

KEYWORDS: Digital humans; Predicted posture; MOO;
Human performance measures; Validation.

1. Introduction
Posture prediction is an important component within the
human modeling and simulation package. Posture prediction
aims to predict a static single posture for a specific
scenario. Motion prediction is a dynamic problem that
aims to predict time-dependent postures for a given period.
Posture prediction is the foundation for understanding motion
prediction, so that is what we focus on in this work.

The objective of this work is to develop a MOO-based
kinematic upper body posture prediction model and validate
this model using experiments. In this paper, we present the
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details of the MOO model, the experimental protocol, criteria
for validation, and a two-domain validation method.

There are three types of approaches for posture prediction.
The first is an experiment-based method (empirical–
statistical approach) in which the posture comes from
experiments and statistic regression. The second is a
direct inverse kinematic method, and the third is a direct
optimization-based method.

In the empirical–statistical approach, data are collected
either from thousands of experiments with human subjects
or from simulations with three-dimensional computer-aided
human-modeling software.6,26 The data are then analyzed
statistically in order to form predictive posture models. These
models have been implemented in the simulation software
along with various methods for selecting the most probable
posture given a specific scenario.1,5,8

The direct inverse kinematics approach to posture
prediction has received substantial attention. With this
approach, the position of a limb is modeled mathematically
with the goal of formulating a set of equations that provide
the joint variables.13,14,15,16,29–31 Griffin10 gives a review
of the validation of biodynamic models. Wang et al.32

demonstrate the validation of the model-based motion in the
REALMAN project.

The direct optimization-based method considers posture
prediction an optimization problem in which humans choose
a posture to minimize certain objective functions.18,19,33,36,37

In the biomechanics literature, significant efforts have
focused on static lifting posture prediction in three different
behavioral criteria or objective functions. The first criterion
assumes that subjects choose a posture that requires the
minimum overall effort.3 The second criterion assumes
that subjects minimize local effort or fatigue.2,24 The third
criterion assumes that subjects choose the posture with the
greatest stability.17 Dysart and Woldstad7 compared these
three models. This paper presents the development and
validation of the MOO-based kinematic posture prediction
model based on our previous work).18,19,33,36,37

This paper is organized as follows: Section 2 introduces
the MOO-based posture prediction model, Section 3 presents
the detailed validation process, and Section 4 presents the
conclusion and discussion.

2. MOO-based Method for Kinematic Posture
Prediction
In this section, we briefly introduce the kinematic model for
a digital human model, derive human performance measures,
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Fig. 1. Kinematic model.

and formulate the redundant inverse kinematics problem as
a MOO problem.

We have developed a digital human with 109 degrees
of freedom (DOFs),34,36 shown in Fig. 1 based on Denavit
Hartengerg method.4 In this model, the kinematic joints from
the waist to the right hand have 21 DOFs and are represented
by q1, . . . , q21, respectively. The kinematic joints from the
left clavicle to the left hand have 9 DOFs and are described
by q22, . . . , q30. The kinematic joints for the neck have 5
DOFs and are denoted by q31, . . . , q35. Joints for legs and
feet are represented by q36, . . . , q49. Each eye has 2 DOFs,
each hand has 25 DOFs,25 and the model has 6 global DOFs
(3 prismatic and 3 rotational joints). It has five open loops
starting from the root at the hip point to the right hand, left
hand, head, left leg, and right leg.

Posture prediction is defined as follows. We try to find
the configuration (joint angles q) of a human when he
or she reaches for a target point using the fingertip or
other end-effector (point of interest on body). Because the
human model has a high number of DOFs, this problem
is a redundant problem. The hypothesis is that human
performance measures govern how humans move. An MOO-
based optimization model is used to solve this problem.

Postures/motions inherit variability due to (1) various tasks
and (2) variable anthropometry. Many human performance
measures act together to govern human postures. In this
study, one of the objectives is to develop the corresponding
mathematical model (human performance measures). The
first is that human posture gravitates to a “neutral posture,”

and there are different task-related neutral postures.14 For
example, when humans stand to achieve a task, the neutral
posture is one in which the arms are straight down at the sides,
and the neck, torso, and legs remain straight in the frontal
plane. When humans sit, the neutral position is one in which
the torso leans on the seat back, knees bend, feet rest on the
floor, and arms are on the arm rests of the seat. The second
performance measure is potential energy.33 Humans use one
posture instead of another to save energy. For example,
humans use the arm before the torso or clavicle because
the mass of the arm is much smaller than the mass of the
torso (this is obtained trough observations). The third is that
joints with tendons try to avoid stretching those tendons.20

The fourth factor is vision;21 humans try to see a target
as they reach for it. However, in the muscular discomfort
function, joint displacement has been included in each joint.
Therefore, three human performance measures are used as
the cost function in the proposed method.

Based on human performance measures such as change
of potential energy, visual displacement, and muscular
discomfort,19,23,33,36 the MOO problem is formulated as
follows:

Find : q ∈ RDOF (1)

to minimize:

f (q) = w1fMus discomfort(q) + w2fVisualDisplacement(q)

+ w3fdelta PE(q)
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subject to:

distance = ∥∥x (q)end−effector − xtarget point
∥∥ ≤ ε

qL
i ≤ qi ≤ qU

i ; i = 1, 2, . . . , DOF,

where wi are the weights; ε is a small number that
approximates zero; x(q)end−effector ∈ R3 is the position vector
in Cartesian space that describes the location of the end-
effector as a function of the joint angles, with respect to the
global coordinate system; and x(q)targetpoint is the position
vector of the target point. All optimization problems are
solved using the software SNOPT,9 which uses sequential
quadratic programming. Analytical gradients are provided
for all of the objective functions and for the constraint.

Three human performance measures have been developed
and are defined in the following section:

2.1. Muscular discomfort
This function incorporates three facets of musculoskeletal
discomfort: (1) the tendency to move toward a generally
comfortable position, (2) the tendency to avoid postures in
which joint angles are pushed to their limits, and (3) the idea
that people strive to reach or contact a point using one set of
body parts at a time. With regard to facet 2, the avoidance of
joint limits does not apply to joints where ligaments and/or
tendons are not stretched, as with the elbow and clavicle. With
regard to facet 3, in terms of upper-body motion, one first
tries to reach a point using one’s arm. If that is unsuccessful,
then one bends the torso. Finally, if necessary, the clavicle is
extended. The intent in developing this performance measure
is not to quantify discomfort but to model components that
are proportional to discomfort. Consequently, only its relative
values (from one posture to another), not its absolute values,
are significant.

The final function is given as follows:

fMus discomfort(q) =
DOF∑
i=1

[
γi

(
�qnorm

i

) + QUi + QLi

]
, (2)

where �qnorm = qi−qN
i

qU
i −qL

i

. QU and QL are specially designed

penalty functions that incorporate the discomfort associated
with joint angles that approach joint limits. They are defined
as follows:

QU =
(

0.5 Sin

(
5.0

(
qU

i − qi

)
qU

i − qL
i

+ 1.571

)
+ 1

)100

, (3)

QL =
(

0.5 Sin

(
5.0

(
qi − qL

i

)
qU

i − qL
i

+ 1.571

)
+ 1

)100

. (4)

QU is zero until a joint angle is in the upper 5% of its range,
and QL is zero until a joint angle is within the lower 5%
of its range. γi represents weights, but these weights are not
used in the same way that weights for joint displacement
are. Instead, these are used to model the tendency to move
different sets of body parts sequentially. The specific values
for these weights are irrelevant; the weights simply need to

Fig. 2. Illustration of the potential energy of the forearm.

have significantly different orders of magnitude. The weights
for the arms are equal to 1. The weights for the spine and neck
DOFs are all 1 × 104. The weights for the clavicle DOFs are
1 × 108. Note that this assumption is only for static postures.

2.2. Delta potential energy
This function represents the change in potential energy
(called delta potential energy) and uses weights that are based
on the mass of different segments of the body. With this
performance measure, the primary segments of the upper
body are represented with six lumped masses: three for
the lower, middle, and upper torso; one for the upper arm;
one for the forearm; and one for the hand. Based on the
definition of potential energy, the heights of the masses
provide the components of the human performance measure.
Then, mathematically, the weight (force of gravity) of a body
segment provides a multiplier for movement of that segment
in the vertical direction. In order to avoid having the virtual
human constantly bend over and thus minimize potential
energy, we actually minimize the change in potential energy.
This means that each body segment essentially has a different
datum, where the potential is assumed to be zero. The vector
from the origin of a link’s local coordinate system to its
center of mass is given by iri , where the subscript indicates
the relevant local coordinate system. In order to determine
the position and orientation of any part of the body, we use the
transformation matrices (i−1)Ai , which are 4 × 4 matrices that
relate the local coordinate system i to the local coordinate
system i − 1. Consequently, ri is actually an augmented
4 × 1 vector with respect to local coordinate system i, rather
than a 3 × 1 vector typically used with Cartesian space.
g = [

0 −g 0 0
]T

is the augmented gravity vector. When the
human upper body moves from one configuration to another,
there are two potential energies: P ′

i , which is associated
with the initial configuration, and Pi , which is associated
with the current configuration. Therefore, for the first body
part in the chain (the lower torso), the potential energies
are P ′

1 = m1gT 0A′
1r1 and P1 = m1gT 0A1r1. The potential

energies for the second body part are P ′
2 = m2gT 0A′

1
1A′

2r2

and P2 = m2g0A1
1A2

2r̄2 + P1. The potential energies for
the ith body part are P2 = m2g0A1

1A2
2r̄2 + P1 and P2 =

m2g0A1
1A2

2r̄2 + P1. In Fig. 2, �hi is the y-component of the
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Fig. 3. Four in-vehicle tasks.

vector 0A′
1 · · · i−1A′

iri − 0A1 · · · i−1Airi . The final objective
function, which is minimized, is defined as follows:

fDelta−PE(q) =
κ∑

i=1

(
Pi − P ′

i

)2
. (5)

Note that Eq. (6) can be written in the form of a weighted
sum as follows:

fDelta−PE(q) =
κ∑

i=1

(mig)2(�hi)
2, (6)

where (mig)2 represents the weights, (�hi)2 acts as the
individual objective functions, and κ = 6 is the number of
lumped masses.

2.3. Visual displacement
Visual displacement is defined as the absolute value of the site
angle no matter where the target point is located. Therefore,
minimizing visual displacement essentially minimizes the
site angle. That is, the further the visual angle is from zero,
the higher the value of the visual displacement function.
This idea is formulated mathematically as what we call basic
visual displacement:

VisualDisplacement = θ(q)2, (7)

where the site angle θ is obtained using the arc cosine of the
vector dot product. However, because of the arc cosine term
necessary to find θ , Eq. (7) is discontinuous. To avoid this
discontinuity, the following expression is proposed:

fVisualDisplacement(q) = n

(
1 − cos

[
θ(q)

2

])
, (8)

where n = 10. This expression has the same basic conceptual
significance and the same mathematical properties as Eq. (7)
but avoids the discontinuities.

The MOO-based approach is different from traditional
inverse kinematic methods or the experiment-based
approach. It enforces human performance measures to drive
the posture. One advantage of this approach is that one

just needs to add some additional constraints for different
scenarios. For example, if the driver puts his/her elbow on
the arm rest, to predict reaching posture one just adds another
distance constraint between the elbow (another end-effector)
and the arm rest to be zero. Another advantage is that this
model is a generic one that can be easily extended to a model
that considers all factors. We describe it as a generic model
because any posture prediction for any scenario and any
subject can be formulated as a MOO problem. One example is
that this kinematic posture prediction model can be extended
to include strength and body balance constraints.

3. Validation of Predicted Postures
In this section, we will describe the validation process,
which includes validation tasks and participant selection,
data collection using a motion capture system, experimental
protocols, and the two-domain approach to validation.

3.1. Experiments
This study focuses on the in-car environment. We selected
realistic in-vehicle tasks that test both the simple and the
complex functionality of the human simulations. Figure 3
shows the four tasks that were chosen for the experiment.
Task 1 requires reaching the point at the top of the A-pillar,
a simple reach task. Task 2 requires reaching the radio tuner
button, a slightly difficult reach task. Task 3 requires reaching
the glove box handle, a difficult reach task. Task 4 requires
reaching a point on the driver’s B-pillar seatbelt adjuster. This
is a complex task that requires reaching across the body and
turning the head to see the target. The general procedure for
achieving a task is as follows: the subject holds the steering
wheel using both hands for the initial posture, then maintains
the left handhold and uses the right index finger to touch the
target point.

Good sampling is necessary to make sure that the
anthropometric statistics resulting from a survey accurately
represent the population of interest. To cover a larger
driver population, auto designers choose a range of
percentiles from 5% female to 95% male. Therefore,
in our experiment, we chose four different populations,
all Americans (Caucasians): 5th-percentile female, 50th-
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Fig. 4. Experiment markers.

percentile female, 50th-percentile male, and 95th-percentile
male. Three subjects were selected within each percentile, for
a total of 12 participants. For males, the average height was
182.9 (SD 8.3) cm and the average mass was 90.7 (SD14.4)
kg. For females, the average height was 157.7 (SD 7.2)
cm and the average mass was 58 (SD 5.9) kg. They were
well distributed between the ages of 26 and 48 years. The
protocol was approved by the Institutional Review Board
of The University of Iowa. All participants gave informed
consent prior to the study.

Optical systems have many applications in biomechanical
studies.11,27,28 In the motion capture process, a number of
reflective markers are attached over bony landmarks on the
participant’s body, such as the elbow, the clavicle, or the
vertebral spinous processes. In this work, redundant markers
(more than the minimum required) were used to compensate
for occluded markers. The time history of the location of
the reflective markers was collected using a Vicon motion
capture system with eight cameras at a rate of 200 frames per
second.

In the plug-in gait protocol, markers are attached to bony
landmarks on the subject’s body to establish local coordinate
systems on various segments of the body. Joint centers and
joint profiles can then be obtained using these coordinate
systems. Methodologies for calculating joint center locations
and link lengths of humans are available and have been
somewhat successful.12 In this work, due to the complexity
of the capturing environment for a seated person inside a
car and due to the limited number of cameras available
at the time of the experiments (eight), redundant markers
were attached to the upper part of the subject’s body to
estimate joint center locations and to compensate for the
missing markers, as shown in Fig. 4. The marker placement
protocol was designed to facilitate the process of obtaining
the location of the joint centers of the upper part of the
subject’s body (right wrist, right elbow, right shoulder, and
hip joint) during the experiments. In the marker placement
protocol, one marker was attached to the end effecter (the

end of the middle finger), three markers were attached to
the wrist joint, and three markers were attached to the elbow
joint. The shoulder joint is very complicated, so four markers
were used to estimate the location of this joint center, and
two markers were used to estimate the location of the clavicle
(one on the clavicle and one on the T4).

3.2. Two-domain validation
In this study, we have developed a two-domain approach to
validate the predicted posture.22,35 This approach validates
the predicted posture in two domains: across percentiles and
within percentiles. The weights for the objective function in
Eq. (1) are chosen as w1 = 1.0, w2 = 1.0, and w3 = 0.01 by
the trail and error method. The first author’s research group
is investigating a systematic method (inverse optimization
method) to determine weights within MOO cost functions.38

3.2.1. Across percentiles. We have selected one represent-
ative subject for each percentile arbitrarily. That means
there is one subject from each of the four different
percentiles. Therefore, across percentiles we consider only
four subjects and consider all tasks together. We first
illustrate the coefficient of determination R2. Then, we only
demonstrate the confidence intervals for the elbow joint
angles. Figures 5(a) through 5(c) are regression plots of the
Cartesian coordinates of x, y, and z for the joint centers of
the right wrist, elbow, and shoulder, respectively. Figure 5(d)
is the right elbow joint angle regression plot. The red straight
line is at 45 degrees with respect to the X (horizontal) axis. All
R2 values satisfy R2 ≥ 0.7, and the slopes of all regressions
are close to 1.

For confidence intervals, we demonstrate only the elbow
joint angle in this paper; however, the procedure to determine
the confidence intervals is the same as for other joint centers.
The confidence interval of regression for the elbow joint
angle with a 95% confidence level is 0.1115 ≤ ρ2 ≤ 0.7967
and is shown in Table I. The confidence interval for the
slope of the regression of the elbow joint angle with a 95%
confidence level is within (0.7033, 1.3038). The mean of
elbow angle is −49.44 degrees and the confidence interval for
mean with 95% confidence level is within (−65.58, −33.30)
degrees. The confidence interval of mean is shown in Fig. 6.

3.2.2. Within percentiles. In this category, we used a 50th-
percentile male as one example to demonstrate the statistical
validation results. All R2 values satisfy R2 ≥ 0.7, except
in the case of Shoulder x, which is shown in Fig. 7. The
confidence intervals are straightforward, as in the examples
above. In this case, the confidence interval of regression for
the elbow joint angle (95% confidence level) is 0.4999 ≤
ρ2 ≤ 0.9509. The confidence interval for the slope of the
regression of the elbow joint angle (95% confidence level)
is within (1.075, 1.727). The mean value is −54.96 degrees
and the confidence interval for mean with 95% confidence
level is (−72.97, −36.95) and is shown in Fig. 8.

In general, R2 values are larger for across percentile case
compared to within percentile case. According to statistic
theory, larger R2 value refers that the model is better. Actually
this is not true. This is an indication that R2 is not a perfect
metric for model validation. Clustered x, y, or z will result
in a larger R2, and an evenly spaced x, y, or z will result in a
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Fig. 5. Regression plots across percentiles.

Table I. Confidence interval of correlation.

Confidence intervals
of correlation 95 % confidence levels

Correlation 0.7118
coefficient R

z′ 0.891
z 1.960
Standard error 0.27735 Lower Upper
Lower limit for z′ 0.347217 ρ limits 0.333905 0.892571
Upper limit for z′ 1.434429 ρ-squared 0.111493 0.796682

smaller R2. From Fig. 5 it is shown that the coordinates (x,
y, and z) are clustered for across percentile case. Therefore,
R2 values are larger.

Figure 9 shows the snapshots of the simulation and
experiment postures for one of the AM50 subjects. In general
the simulated postures match approximately the experimental
results well.

4. Conclusions and Discussions
This study presents a MOO-based posture prediction model
and a systematical validation procedure. The MOO approach
is a generic method in the sense that it can be adapted

Fig. 6. Confidence interval for mean.

to any scenario and any subject including all different
factors. In general, although there were errors from all
different sources—such as the motion capture system, subject
link lengths from measurement, the method that transforms
markers on the skin to joint centers or joint angles, the human
model, and the posture prediction model—the validation
process was successful and the predicted postures were

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Jul 2011 Username: laverman IP address: 128.255.25.117

Multi-objective optimization-based method for kinematic posture prediction 251

Fig. 7. Regression plots within male 50%.

within the required error limit. We used a two-domain
approach to validate the predicted postures, and all plots
contain a wealth of information. Generally, R2 is a metric
for the degree of precision of the model. The slope of the
regression is another criterion to indicate the accuracy of
the model. However, because we used a limited number
of samples for validation, it was necessary to investigate
confidence intervals to predict the range of values that was
likely to indicate the unknown population.

In general, all R2 are not less than 0.7 for the first two
domains (within percentiles and across percentiles), all
confidence intervals are reasonable, and they satisfy the
validation requirement. However, most R2 for the third
domain (a specific task) are small. This phenomenon suggests
that regression with respect to a task is not appropriate for val-
idating the posture because it is a pure randomness problem.

Note that in the MOO posture prediction environment, the
end-effector orientation constraint is available and it depends
on the user to select it or not. In this paper, we did not
discuss the orientation part because we did not validate the
orientation.

This study also shows that we should consider the follow-
ing aspects for the predicted posture and validation process:

(1) There are several areas in which our model could be
improved: (a) an advanced shoulder model considering

Fig. 8. Confidence interval of mean within male 50%.

scapula movement, coupled degrees of freedom, and
coupled joint limits; (b) gender within the model; (c) hip
movement; (d) neck and head model that is connected to
the spine; (e) cognitive modeling aspects; and (f) bringing
joint torque into the discomfort cost function.

(2) A good sampling involves determining the sample size,
as well as determining the sample structure in terms of
age, gender, and race. In this study, we chose a sample
size of 12. However, from the plots we have learned that
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Fig. 9. Validation for four tasks.

we should increase the sample size to at least 40. Also,
the age range was set at 26–48 years old. To accurately
represent the population of interest for the vehicle interior
design, we should increase the age range to include young
drivers and seniors.

(3) Weight sensitivity study is necessary for MOO-based
posture prediction because weights play an important
role indicating the relative importance of different human
performance measures.

(4) Boundary condition is one of the most important
factors that affect the predicted posture where boundary
condition defines how the human body interacts
with the environment. For example, for the in-
vehicle seated posture, the boundary condition entails
collision avoidance between the body and the in-vehicle
environment, including the seat, steering wheel, panel,
ceiling, door, etc.

(5) To extend this model to a dynamic environment, we have
to include strength and balance constraints and external
loads exerted in the hands and feet.
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