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Abstract. Digital human modeling and simulation plays apamant role in product
design, prototyping, and manufacturing: it reduttes number of design iterations
and increases the safety and design quality ofymtsd Posture prediction is one of
the key capabilities. It is especially useful ire tHesign of vehicle interiors for
checking the reachability of buttons and deterngnaomfort levels. This paper
presents the validation of predicted posture far thrtual human Santos. The
predicted posture is a physics-based model andrisulated as a multi-objective
optimization (MOO) problem. The hypothesis is thatman performance measures
(cost functions) govern how humans move. We ch@ssubjects from four different
percentiles, all Americans (female 5%, female 56%le 50%, and male 95%). Four
realistic in-vehicle tasks requiring both simpledacomplex functionality of the
human simulations were chosen: reaching a poithiteatop of the A-pillar, the radio
tuner button, the glove box handle, and a pointtten driver's B-pillar seatbelt
adjuster. The subjects were asked to reach thedoget points, and the joint centers
for wrist, elbow, and shoulder and the joint angfeclbow were recorded using a
motion capture system. We used these data to t@lolar model. The validation
criteria comprise R-square and confidence intervalse results show that the
predicted postures match well with the experimesults, and are realistic postures.

Keywords: Predicted posture, MOO, human performance measwedilation,
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1 Introduction

Posture prediction is an important component withi human modeling and simulation
package. There are three major types of posturdiqtien. The first is an experiment-
based method (empirical-statistical approach) inictvhthe posture comes from
experiments and statistic regression; this appraimgs not need to be validated. The
second is an inverse kinematic method and the thiaddirect optimization-based method,
and other approaches. The approaches that aréractlylfrom experiment do need to be
validated.

The objective of this study is to validate in-vétioptimization-based posture prediction
using experiments. In this paper we present thaildedf the experimental protocol,
criteria for validation, and a three-domain validatmethod.

In the empirical-statistical approach, data arelectéd either from thousands of
experiments with human subjects or from simulatiaith three-dimensional computer-



aided human-modeling software (Porter et al., 199the data are then analyzed
statistically in order to form predictive postureodels. These models have been
implemented in the simulation software along wigtnious methods for selecting the most
probable posture given a specific scenario (Beak @haffin, 1992; Zhang and Chaffin,
1996; Faraway et al., 1999). This approach is basedctual human data and thus does
not need to be verified in terms of realism.

The inverse kinematics approach to posture predictivhich uses biomechanics and
kinematics as predictive tools, has received sukislaattention. With this approach, the
position of a limb is modeled mathematically withetgoal of formulating a set of
equations that provide the joint variables (Jun@let1995; Kee eal., 1994; Jung and
Choe, 1996; Wang, 1999; Tolani et al., 2000). Zhand Chaffin (2000) introduce an
optimization-based differential inverse kinemat@gproach for modeling 3-D seated
dynamic postures and validation. Griffin (2001) eégva review of the validation of
biodynamic models. Park et al. (2004) present a ongsbased human motion simulation.
It uses an optimization method as the motion madiidn algorithm to fit the specific
motion scenario. It also uses experiments to vedidhe model. Wang et al. (2005)
demonstrate the validation of the model-based moiio the REALMAN project.
However, all of these approaches are restrictedl&dively simple models.

Yang et al. (2004) introduce a direct MOO-basedyresprediction for a high-degree-of-
freedom human model in real-time. This paper prssenthree-domain method for
validating the predicted posture. The validatioarsgio consists of the in-vehicle seated
reaching tasks.

This paper is organized as follows. Section 2 hyriedviews Santos’s kinematic model

and the multi-objective optimization-based postprediction model. Section 3 presents
validation tasks, subject selection, experimentaitqrol, data collection and analysis,

validation criteria selection, and the detailedidation process. Section 4 presents the
conclusion and discussion.

2 MOO-based Posture Prediction

In this section we present the kinematic modettervirtual human Santos, determine the
physics factors that affect human postures, dethee mathematical models (human
performance measures) of these factors, and fotentt@ redundant inverse kinematics
problem as a MOO problem.

2.1 Santos’s Kinematic Model

The human body is a complex system that includeefomuscles, tendons, and nerves.
The human skeletal model can be simplified as ahan@ism with rigid links connected by
kinematic joints. One anatomy joint could have onenore kinematic joints. For example,
the shoulder joint has three revolute kinematiotgi while the elbow joint entails only
one revolute joint. Therefore, we can model the &iras a system with high degrees of



freedom (DOF). Fig. 1 shows a 109-DOF Santos kinenmraodel (Yang et al., 2005,
2006). It has five open loops starting from thetrabthe hip point to the right hand, left
hand, head, left leg, and right leg.

Fig. 1 Santos’s kinematic model

The end-effector, or point of interest, is the &rtip, toe, or a point on the head. The
position vector of the end-effector with respectthie global frame attached to the hip
point x(q) is defined by the following:
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where '™ T, is a(4x 4) transformation matrix from frame to framei -1 determined by
the Denavit-Hartenberg method (Denavit and HartemkE955).q :[0& qn]T is the

joint angles from the hip to the end-effectgy. is the end-effector vector with respect to
framen.

2.2 Posture prediction

Posture prediction is defined as follows. We tryfital the configuration (joint angles) of
a human when he or she reaches for a target psiimg the fingertip or other end-effector
(point of interest on body). Because the human iinbde a high number of DOFs, this
problem has multiple solutions, or is a redundaobfem. We have proposed a MOO-
based method (Yang et al., 2004) in which physé&tofs govern how humans move.
This approach ensures autonomous movement regardfethe scenario and can be
implemented in real time.

There are many physics factors that govern humastupes. The first is that human
posture gravitates to a “neutral posture,” and ehare different task-related neutral
postures. For example, when humans stand to achi¢agk, the neutral posture is one in
which the arms are straight down at the side, hacheck, torso, and legs remain straight
in the frontal plane. When humans sit, the neytoaition is one in which the torso leans
on the seat back, knees bend, feet rest on the fimd arms are on the arm rests of the
seat. The second factor that governs human postyretential energy. Humans use one
posture instead another to save energy. For exatmpieans use the arm before the torso



or clavicle because the mass of the arm is muchlesmban the mass of the torso. The
third factor is that initial posture affects theegicted posture, and the fourth is that joints
with tendons try to avoid stretching those tenddit fifth factor is vision; humans try to
see a target as they reach for it.

Based on these physics factors, we developed demathematical cost functions (human

performance measures). They are joint displacenadfurt, change of potential energy,

visual displacement, and discomfort (Yang et @04, Marler, 2005, Marler et al., 2006).

The MOO-based approach is different from traditidnaerse kinematic methods or the

experiment-based approach. It enforces human peafoce measures to drive the posture.
Therefore, this approach is more generic and causkd in all different scenarios. This

MOO problem is formulated as follows:

Tofind: q

to minimize: Human performance measures

subject to: Constraints

where constraints include the requirement thateth@-effector should touch the target
point and the requirement that joint angles shbeldvithin their limits.

3 Validation of Postures

In this section, we will describe the validatiorska, subject selection, data collection
using a motion capture system, experimental prd¢oexperiment data variation analysis,
validation criteria, and the three-domain appraacthe validation.

3.1 Tasks to validate

This study focuses on the in-car environment. Wecsed realistic in-vehicle tasks that
test both the simple and the complex functionalitthe human simulations. Fig. 2 shows
the four tasks that were chosen for the experimeagk 1 requires reaching the point at
the top of the A-pillar, a simple reach task. Taslequires reaching the radio tuner button,
a slightly difficult reach task. Task 3 requirescking the glove box handle, a difficult
reach task. Task 4 requires reaching a point omltiver’s B-pillar seatbelt adjuster. This
is a complex task that requires reaching acrosddidy and turning the head to see the
target. The general procedure for achieving a tasks follows: the subject holds the
steering wheel using both hands for the initialtpes then maintains the left handhold
and uses the right-hand index finger to touch déingett point.

3.2 Subject selection

To cover a larger driver population, auto desigméimose a range of percentiles from 5%
female to 95 % male. Therefore, in our experimesmt,chose four different populations,

all Americans: 5% female, 50% female, 50% male, @%b male. Also within percentiles,

three subjects are selected.



3.3 Data collection and experimental protocol

Optical systems have many applications in biomeicharstudies (Hagio et al., 2004;
Robert et al., 2005; Rahmatalla et al., 2006) him motion capture process, a number of
reflective markers are attached over bony landmankthe participant’s body, such as the
elbow, the clavicle, or the vertebral spinous psses. As the participant walks or carries
out a given physical task or function, the positidstory of each marker is captured using
an array of infrared cameras. A potential problerthwassive markers, though, is
occlusion, where the markers do not appear in enough ofdhgera shots due to blockage
of the line of sight between the marker and thearasiby objects in the scene or by other
parts of the subject’'s body. In this work, redurtdararkers (more than the minimum
required) were used to compensate for occluded emarRhe time history of the location
of the reflective markers was collected using aovlienotion capture system with eight
cameras at a rate of 200 frames per second.
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Fig. 2 Four in-vehicle tasks

Several marker placement protocols have been intextlin the literature for studying various
types of motion. Among these protocols, plug-intdaia typical protocol that has been
adopted by systems such as Vicon and LifeMOD. B ghug-in gait protocol, markers are
attached to bony landmarks on the subject’'s bodgstablish local coordinate systems on
various segments of the body. Joint centers amd jobfiles can then be obtained using these
coordinate systems. Methodologies for calculatioigtj center locations and link lengths of
humans are available and have been somewhat sfidqgtalvorsen et al., 1999). However,
because of the occlusion problem, it is very harddcomplish this goal with a high degree of
accuracy for people in seated positions with thisterce of obstacles in the environment. In
this work, due to the complexity of the capturimyieonment for a seated person inside a car
and due to the limited number of cameras availaléhe time of the experiments (eight),
redundant markers were attached to the upper presubject’'s body to estimate joint center
locations and to compensate for the missing markassshown in Fig.3. The marker
placement protocol was designed to facilitate tee@ss of obtaining the location of the joint
centers of the upper part of the subject’s bodyhfrivrist, right elbow, right shoulder, and hip
joint) during the experiments. In the marker plaeamprotocol, one marker was attached to
the end effecter (the end of the middle fingerje¢hmarkers were attached to the wrist joint,
and three markers were attached to the elbow johe. shoulder joint is very complicated, so
four markers were used to estimate the locatiahisfjoint center, and two markers were used
to estimate the location of the clavicle (one om ¢havicle and one on the T4). In all cases, the



joint center location was estimated by the intafeacof the lines connecting the markers on
each joint.

3.4 Trial-to-trial and subject-to-subject data variation

As described in above section, we obtained thet joémters for the right wrist, elbow, and
shoulder and the right elbow angles using a motiapture system. The objective was to
correlate the relationship between the simulatesults and experiment results. However, we
had to transform all data to the same coordinaséesy. In this study, we used Santos Spinel
above the hip joint as the common coordinate system

When we did the experiment, each subject reachedarget point for five trials. For trial-to-
trial variation, we use subject S95M3 to illustréte results. For subject-to-subject variation,
we demonstrate variation within one percentile (theee S95M subjects). The results are
shown in Fig. 4. The vertical axis denotes theatamn from the mean value of the distance
from the target point to the origin, and the honited axis represents the four tasks. As shown
in Fig. 4, a single subject’s trial-to-trial vaiiat is small and withint10mm and +3degree.
Subject-to-subject variation within percentile®my slightly larger than trial-to-trial variation.
The variation values are withitR5 mm andt6 degrees. Therefore, it is appropriate to average
the data from all five trials and reasonable toasd® a representative subject within the
percentiles.

Fig. 3 Experiment markers

3.5 Validation Criteria

There are several criteria for validation, thoughyt are not independent. In this section, we

summarize the criteria for general model validatinich areR?, confidence intervals of
mean, regression, and other statistic values.

The coefficient of determinatioR” is the relative predictive power of a model. Generallythe
closer it isto one, the better the model is. However,R? is not an absolute measure for a good
model. There are different factors that affectuhkies of R*, such as the range of X values,
different patterns of X values, average values paXd randomness. Therefore, whehf is
close to 1, it does not necessarily mean that theéefis good; it only indicates that the model



can represent the experiment data very well. LikewiwhenR? is small, it does not
necessarily mean that the model is not good. We ta\carefully study the data themselves
and also check whether the slope is close to 1.4bhdegree line with respect to the X axis
denotes that the experiment and simulation valuesttee same. This is another important
parameter for validating the model.

A confidence interval gives an estimated rangetafisic values that is likely to include an
unknown populatiorp, the estimated range being calculated from a géetrof sample data.
Confidence intervals are calculated at a confidéeeel (a certain percentage), usually 956 (
=0.05), but we can also produce 90%, 99%, 99.9%, @her confidence intervals for the
unknown parametgs. Confidence intervals are more informative thae simple results of
hypothesis tests because they provide a rangeaa§iple values for the unknown parameter.
Confidence intervals of mean, regression, and slopée linear regression are used for
validation of the model.
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Fig. 4 The variation in the mean values for theatise between the target and the origin
3.6 Three-domain approach

In this study we have developed a three-domaincagmpr to validate the predicted posture.
This approach validates the predicted posture ieettdomains: across percentiles, within
percentiles, and with respect to Task 2.

We have selected one representative subject fdn paccentile. That means there is one
subject from each of these percentiles: 5% fen&08p female, 50% male, and 95% male.
Therefore, across percentiles we consider only gulnjects and consider all tasks together.
We first illustrate the coefficient of determinati®® . Then, we demonstrate only the

confidence intervals for the elbow joint angleg$-i5 (a)-(c) are regression plots of Cartesian
coordinates of x, y, and z for the joint centerstioé right wrist, elbow, and shoulder,

respectively. Fig. 5(d) is the right elbow jointgde regression plot. The red straight line is at



45 degrees with respect to the X axis. Rf values satisfyR? = 0.7, and the slopes of all
regressions are close to 1.

For confidence intervals, we demonstrate only thewe joint angle in this paper; however, the
procedure to determine the confidence intervalthés same as for other joint centers. The
confidence interval of regression for the elbownjoangle with a 95% confidence level is
0.1115< p? < 0.796. The confidence interval for the slope of the esgion of the elbow
joint angle with a 95% confidence level is witt(iﬁ.7033,1.303)3. The confidence interval
for mean with 95% confidence level is shown in Eda).
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Fig. 5 Regression plots across percentiles

Within 50% male category, we analyze the regressioilar to the cases across percentiles.
All R? values satisfyR? = 0.7, except in the case of Shoulder x. The confidénisevals are
straightforward, as in the examples above. In¢hie, the confidence interval of regression for
the elbow joint angle (95% confidence level) 0s4999< p* < 0.950'. The confidence
interval for the slope of the regression of theoelbjoint angle (95% confidence level) is
within (1.075,1.727. It is obvious that one is not within this rangehich means the
accuracy is not as good as it is across perceniites confidence interval for mean with 95%
confidence level is shown in Fig. 6(b).



Regarding to Task 2, mo&? values are very small. Does this tell us thatrtieel is not
good? The answer is NO. In these plots, most dzitagare clustered together. This shows the
property of “pure randomness.” That means it is apiropriate to validate our model in this
domain. However, this also tells us that our pastorediction model does not capture the
properties of gender because we can use one skttaffrom male 50% to replace the data
from female 50% because there is no significariedihce.
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Fig. 6 Confidence interval for mean

4. Conclusions and Discussions

This study presents a systematical validation pfore of the predicted posture. In general,
although there were errors from all different sestcsuch as the motion capture system, the
method that transforms markers on the skin to joamters or joint angles, the human model,
and the posture prediction model, the validationcpss was successful and the predicted
postures were within the required error limit. Humgostures can be validated using a few
selected key markers, and every degree of freedwes dot need to be tracked. The results
show that it is best to track key joint angles #rellocation of joint centers, not the markers on
the skin. We used a three-domain approach to velittee predicted postures, and all plots
contain a wealth of information. Generally’ B a metric for the degree of precision of the
model. The slope of the regression is anotherriteto indicate the accuracy of the model.
However, because we used a limited number of sanjtlevas necessary to investigate
confidence intervals to predict the range of valtrest was likely to indicate the unknown

population.

The results show that regression with respect task is not appropriate for validating the
posture because it is a pure randomness probleay. dlso show that there are some areas in
which our model could be improved. The posture jotemh model could be improved in the
following areas: (1) an advanced shoulder modesicieming coupled degrees of freedom and
coupled joint limits; (2) gender within the modé) hip movement; (4) neck and head model
that is connected to the spine; (5) cognitive miodedspects. In the meantime, we should do
further experiments with an increased population.
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