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ABSTRACT 

A substantial advantage of predictive virtual human models is the ability to adapt to 
changes in a virtual environment automatically, and with respect to posture 
prediction and analysis, this ability hinges on collision avoidance. Collision 
avoidance must be robust enough to accommodate various types of geometry, must 
apply to the avatar (self-avoidance) as well as virtual objects, must not detract from 
real-time operation, and must be suitable for a variety of real-world scenarios. Thus, 
while leveraging optimization-based posture prediction and a unique method for 
collision avoidance with increase computational speed we present new 
developments in this arena. A new sphere-filling algorithm is presented with 
increased speed and fidelity for creating surrogate geometry, which is critical for 
any type of collision avoidance or detection. The collision avoidance algorithm is 
implemented for self-avoidance. And, the new capabilities are demonstrated on 
automotive and motorcycle examples for ergonomic analysis. The results not only 
involve realistic predicted postures and novel forms of human-performance 
feedback, but also reflect real-time operation. 
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INTRODUCTION 

A critical advantage to using digital human models is the ability to evaluate new 
products and processes virtually. However, fully recognizing this advantage 
requires the virtual human to interact with digital models in a 3-D environment. 
This interaction can be useful for identifying design issues relating to human factors 
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and ergonomics, and can provide insight into human behavior. Such interaction 
between virtual humans and products often depends on predictive capabilities and 
the tendency of changes in the virtual environment to affect predicted responses.  

Thus, this paper presents new developments with predictive collision avoidance 
capabilities, in the context of optimization-based posture prediction. Collision 
avoidance includes the avoidance of collisions with external objects, as well as the 
avoidance of collisions between one part of the digital human and another. The 
collision avoidance described here does not describe just the ability to detect when 
two objects collide, which is known as collision detection, but entails formulating 
the simulation in such a way that obstacles are actually considered as input to the 
problem, and therefore affect the results of a given task. 

The optimization-based posture prediction has many advantages and can be 
adapted to solve a variety of digital human modeling problems (Yang et al., 2006; 
Marler et al., 2007; Marler et al., 2009). One main advantage of this technique is 
the relative ease with which one can expand the accuracy and utility of a simulation 
by adding new mathematical constraints that represent different real-world factors. 
These constraints can represent anything from location-specific targets (Farrell et 
al., 2005) to equations of static equilibrium (Liu et al., 2009), but there are practical 
limits to the number of constraints that can be added while still maintaining 
acceptable software runtimes. 

Consequently, this paper presents new developments that increase both the 
speed and accuracy of collision avoidance for the optimization-based posture 
prediction approach. This work builds and expands on posture prediction 
capabilities for SantosTM, a high-fidelity predictive human model (Abdel-Malek et 
al., 2006; Marler et al., 2008), so the optimization-based method for predicting 
posture is first summarized. Fundamental to most collision detection or avoidance 
approaches is the use of surrogate geometry. Consequently, we outline a new 
sphere-based algorithm for approximating geometry, which can be integrated in the 
optimization formulation. We then extend the multi-run obstacle avoidance method 
(Johnson et al., 2009) to function with self-avoidance. These improvements 
increase the accuracy, speed, and value of human modeling and simulation 
capabilities, and these improvements are demonstrated with practical examples. 

OPTIMIZATION-BASED POSTURE PREDICTION 

In this section, an overview of human optimization-based posture prediction is 
discussed. This includes a brief description of the skeletal model, as well as the 
final optimization formulation. 

Simulating human posture depends largely on how the human skeleton is 
modeled. One way to view a skeleton is as a kinematic system, or series of links 
with each pair of links connected by one or more revolute joints. Therefore, a 
complete human body can be modeled as several kinematic chains, formed by 
series of links and revolute joints. 
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FIGURE 1  A kinematic chain of joints 

 ௜ is a joint angle and represents the rotation of a single revolute joint. There isݍ
one joint angle for each degree of freedom (DOF). ࢗ ൌ ሾݍଵ ⋯  ௡ሿ்߳Թ௡ is theݍ
vector of joint angles in an n-DOF model and represents a specific posture. Each 
skeletal joint is modeled using one or more kinematic revolute joints. ࢞ሺࢗሻ߳Թଷ is 
the position vector in Cartesian space that describes the location of an end-effector 
with respect to the global coordinate system. For a given set of joint angles ࢞ ,ࢗሺࢗሻ 
is determined using the Denavit-Hartenberg (DH)-method (Denavit and Hartenberg, 
1955). With this work, a 55-DOF model for the human torso, arms, legs, and neck 
is used. This also includes six global DOFs, three for translation of the hip point 
and three for rotation about the hip point. The posture of this model is determined 
by solving the optimization problem formulated as follows. 

The design variables for the problem are ݍ௜, measured in units of radians. One 
constraint, called the distance constraint, requires the end-effector to contact a 
target point. In addition, each joint angle is constrained to lie within predetermined 
limits. ݍ௜

௎ represents the upper limit, and ݍ௜
௅ represents the lower limit. The basic 

benchmark performance measure, which serves as the objective function in the 
optimization problem, is joint displacement. This performance measure is 
proportional to the deviation from a neutral position, which is selected as a 
relatively comfortable posture, and is denoted ݍ௜

ே for a particular joint. Because 
some joints articulate more readily than others, a weight ݓ௜ is introduced to stress 
the relative stiffness of a joint. 

The optimum posture for the system is then determined by solving the following 
problem: 

Find:		߳ࢗԹ௡ 

To minimize:		 ௃݂௢௜௡௧஽௜௦௣௟௔௖௘௠௘௡௧ሺࢗሻ ൌ෍ ௜ݍ௜ሺݓ െ ௜ݍ
ேሻଶ

௡

௜ୀଵ
 

Subject	to:	݀݅݁ܿ݊ܽݐݏ ൌ ฮ࢞ሺࢗሻ௘௡ௗି௘௙௙௘௖௧௢௥ െ ௣௢௜௡௧ฮ	௧௔௥௚௘௧࢞ ൑  ߝ
௜ݍ
௅ ൑ ௜ݍ ൑ ௜ݍ

௎; ݅ ൌ 1,2, … , ݊ 

(1) 
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where ߝ is a small positive number that approximates zero and ܨܱܦ is the total 
number of degrees of freedom. (1) is solved using the software SNOPT (Gill et al., 
2002), which uses a gradient-based method. Thus, analytical gradients are 
determined for all objective functions and for all constraints. 

SPHERE-FILLING ALGORITHM 

The optimization formulation for posture prediction can be extended to include 
constraints that prevent an avatar from intersecting objects in the environment; 
however, these constraints must be continuous, differentiable functions. Objects in 
the 3D environment are internally stored as sets of primitive polygons, but 
attempting to formulate constraints that use these primitives would prove to be 
computationally intractable, especially when striving for real-time performance. 
The proposed approach represents an object in the environment with a set of 
spheres, such that the union of the sphere volumes approximates the shape of the 
object. The sphere representation allows for a relatively simple constraint 
formulation. In addition, it allows for variable fidelity, depending on the 
requirements of the problem being solved. Sphere filling algorithms are numerous, 
each with advantages and disadvantages, and many different techniques have been 
tested in the context of the above-mentioned posture prediction problem.  

The current approach for representing surrogate geometry is sphere shelling 
(Johnson et al., 2009), which generates a large number of spheres that cover the 
surface of the object. Sphere shelling is fast but generates a large number of 
spheres, which greatly increases the runtime of posture prediction. Another 
disadvantage of sphere shelling is that it overestimates the shape of the object, as 
the spheres are on the surface and are not necessarily contained inside the object’s 
surface. This overestimation prevents the digital human from getting close to object 
edges and occasionally creates an infeasible problem where conceptually there 
should be a solution. Thus, an advanced sphere filling algorithm has been 
implemented that specializes in generating efficient representations of geometry. 
This adaptive medial-axis approximation is based on three-dimensional Voronoi 
diagrams (Bradshaw et al., 2004) and generates close representations of objects 
with as few spheres as possible. The drawback of this medial-axis algorithm is that 
it takes a relatively long time to generate spheres, even for very simple meshes. 
Consequently, a two-step hybrid sphere-filling algorithm was created that utilizes 
sphere inflation and sphere culling, described as follows. 

Here, we describe the first stage of the hybrid approach. This method uses a grid 
of points (voxels) to create the initial spheres, as with sphere-shelling, but then 
expands spheres inside the object until they touch the edge of the mesh. The 
positioning of the spheres may not be as optimal as with the medial-axis method, 
but the slight loss of representation efficiency is compensated for with the speed 
increase. The following pseudo-code describes this inflation method. 
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inflate( K: mesh, M: integer ) 
 VOXELS: grid ← impose M×M×M grid over bounding box of K 
 SPHERES: sphere set ← ∅ 
 
 for each P: point in VOXELS 

   DIST: float ← signed distance from P to closest triangle in K 
(Bærentzen & Aanæs, 2002) 

  if ( DIST < 0 ) 
   // The voxel is inside the mesh 
   SPHERES ← SPHERES ∪ { sphere( P,DIST ) } 
   
 return SPHERES 

 
This sphere inflating algorithm provides a set of spheres, the centers of which 

are placed on a Cartesian grid. As seen in FIGURE 2Error! Reference source not 
found., there can be a large number of spheres, many of them redundant. Thus, the 
second phase of the hybrid approach involves culling redundant spheres. 

 

 

FIGURE 2  A sphere-filled cube before culling 

When culling spheres, the algorithm ensures that the center of each voxel is 
filled (remains contained within at least one sphere). A greedy algorithm is used to 
select the final set of spheres. During each iteration the algorithm chooses the 
sphere that includes the highest number of previously unfilled voxels, and adds it to 
the final set of spheres. This is repeated until all voxels are filled. Various 
intermediate results for culling a cube are shown in FIGURE 3. 

 

 

FIGURE 3  The first 1 (a), 5 (b), and 10 (c) spheres selected, and the final sphere 
set (d) 

a b c d
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COLLISION AVOIDANCE ALGORITHM  

Conceptually, collision avoidance is modeled by adding an additional constraint to 
the optimization problem (see equation (1)) for every pair of spheres that should not 
intersect. The use of spheres as surrogate geometry greatly increases the simplicity 
of calculating the constraint functions and their gradients. Given an obstacle sphere 
ܱ with a global position and a body sphere ܤ with joint-relative position, the 
constraint function preventing them from intersecting is given as: 
 

݂ሺࢗሻ ൌ ሺܱሻ࢔࢕࢏࢚࢏࢙࢕࢖ ∙ ,ܤሺ࢔࢕࢏࢚࢏࢙࢕࢖ ሻࢗ െ ൫ݏݑ݅݀ܽݎሺܱሻ െ ሻ൯ܤሺݏݑ݅݀ܽݎ
ଶ
൒ 0 

 
Similarly, given two body spheres (approximating the avatar mesh) ܤଵ and ܤଶ, with 
positions given locally, the constraint function preventing their intersection is: 

 

݂ሺࢗሻ ൌ ,ଵܤሺ࢔࢕࢏࢚࢏࢙࢕࢖ ሻࢗ ∙ ,ଶܤ	ሺ࢔࢕࢏࢚࢏࢙࢕࢖ ሻࢗ െ ൫ݏݑ݅݀ܽݎሺܤଵሻ െ ଶሻ൯ܤሺݏݑ݅݀ܽݎ
ଶ
൒ 0 

 
With a basic implementation, one constraint is added to the optimization 

formulation for every pair of spheres that should not collide. Thus, for ݉ body 
spheres and ݊ obstacle spheres, ݉ ൈ ݊ constraints are added for obstacle avoidance. 
Thus, the optimization running time is at best linear in the number of constraints, or 
Ωሺܰܯሻ. In many real-world simulations, it is not uncommon to have thousands of 
obstacle spheres present in the environment, which can greatly increase the time 
required to find a solution. Consequently, a multi-run collision avoidance method 
has been implemented, in which the optimizer is executed in a loop, with each 
iteration running posture prediction, performing collision detection, and then either 
adding new necessary constraints to the problem, or returning a satisfactory result 
(Johnson et al., 2009). This approach requires multiple executions of the optimizer, 
but it ultimately considers fewer constraints than the basic implementation. 

Here, we outline how the multi-run approach is used for self-avoidance, where 
spheres representing an avatar are restricted from colliding with other spheres in the 
avatar. This multi-run approach is especially helpful at reducing optimization 
constraints, because with the basic implementation, the number of constraints 
required for M body spheres is ܱሺܯଶሻ. Thus, implementing the multi-run approach 
reduces constraints and allows for an increased number of defined body spheres. 

One source of difficulty with self-avoidance is that there are certain body-sphere 
pairs that should never be constrained from colliding. For example, the body 
spheres that represent the avatar’s right forearm need not be constrained from 
intersecting spheres in the right hand, but they should not collide with spheres that 
represent the avatar’s torso. To handle this, a new grouping approach has been 
incorporated, whereby the body spheres are grouped based on their physical 
location and spheres in the same group are not checked for avoidance. In addition, 
there are specific pairs of body spheres that may reside in different groups but 
should still not be constrained to avoid one another. The user has the ability to alter 
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the grouping, and this provides significant flexibility in tailoring speed and 
precision. 

A new multi-run approach that incorporates these considerations for self-
avoidance is shown in following pseudo-code: 
 

avoid( BODY: body spheres ) : posture 
 ENABLED: sphere pairs ← ∅ 
 DISABLED: sphere pairs ← ∅ 
 
 for all {X, Y} ∈ ࣪ሺBODYሻ 
  if ( group(X) ് group(Y) ∧ ignore ( X, Y) = false ) 
   DISABLED ← DISABLED ∪ {X, Y} 

 
 do 

  RESULT: posture ← optimizer_solve( ENABLED ) 
  NEW_COLLISIONS: boolean ← false 
 
  for each  {X: body sphere, Y: body sphere} in DISABLED 
   D: float ← |position( X, RESULT )െposition( Y, RESULT )| 
   if ( D < radius( X ) + radius( Y ) ) then 
    NEW_COLLISIONS ← true 
    DISABLED ← DISABLED \ {(X, Y)} 
    ENABLED ← ENABLED ∪ {(X, Y)} 
 while ( NEW_COLLISIONS = true) 
  
 return RESULT 

RESULTS 

The performance benefits of the multi-run approach have already been discussed in 
a previous paper by Johnson et al., so this section takes the algorithmic 
advancements discussed thus far and shows their application to biomechanics, 
design, and analysis. The first two examples display the merits of the new sphere-
filling algorithm and independently demonstrates the effects of self avoidance and 
obstacle avoidance on posture prediction results. 

Figure 4 demonstrates a reaching task where the avatar is instructed to touch his 
seat belt buckle with his left hand. The resulting posture is shown with self-
avoidance turned off (Figure 4.b) and with self avoidance enabled (Figure 4.c). The 
joint displacement objective function was used in this example, with the neutral 
posture shown in Figure 4.a. The numbers indicate the relative objective function 
value for the various postures. These numbers show that Figure 4.b is a better 
posture according to the objective function, but with the self avoidance constraints 
enabled, the avatar is forced to increase the objective value to avoid collisions.  
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FIGURE 4  Posture prediction results with b. self-avoidance disabled and c. self-
avoidance enabled using the neutral posture and body spheres in a. 

The second example, shown in Figure 5, demonstates the new sphere filling 
method and its use with obstacle avoidance. Figure 5.a shows a steering wheel 
represented filled with 1206 spheres by the sphere-shelling algorithm. Figure 5.b 
shows the same steering wheel filled with 185 spheres generated by the inflate 
method. Figure 5.c and d show a posture prediction task where the avatar is 
reaching to the right of the steering column first without obstacle avoidance and 
then with obstacle avoidance. The obstacle avoidance in Figure 5.d uses the spheres 
from the inflate method (Figure 5.b). 

 

	

FIGURE 5  Obstacle spheres a. generated by shelling method and b. generated by 
inflation method. Posture prediction results c. with obstacle avoidance disabled and 
d. obstacle avoidance enablde using spheres from b. 

The third example, shown in Figure 6, shows a predicted posture on a 
motorcycle. The avatar Is constrained to touch his right knee with his left hand. 
Without collision avoidance, the avatar’s wrist intersects with the motorcycle gas 
tank, as shown in Figure 6.a. With collision avoidance and self-avoidance, the 
avatar avoids the collision with the motorcycle, and he also avoids colliding with 
himself, as shown in Figure 6.b. 

a b c

a b

c d

Objective:	0	 Objective:	1.129 Objective:	40.66	
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FIGURE 6    Posture prediction with self-avoidance and obstacle avoidance a. 
disabled and b. enabled. 

CONCLUSION 

Using optimization-based posture prediction as a foundation, this paper has 
presented novel advances with collision avoidance, which is a critical advantage of 
predictive DHM capabilities. Real-time collision avoidance provides one more way 
in which a user can alter a virtual environment on the fly and see the effects on 
human performance. A new multi-run approach to obstacle avoidance has been 
extended to self avoidance. In addition, a new method for developing surrogate 
geometry has been developed and tested in conjunction with a grouping method for 
culling surrogate geometry used to represent avatars. The results, which are 
demonstrated in the context of automotive and motorcycle ergonomic analysis, are 
quite successful. 

The presented method for sphere filling has potential applications that extend 
far beyond posture prediction. For instance, collision detection is another critical 
component of virtual modeling and simulation and also requires fast and accurate 
creation of surrogate geometry. Thus, the proposed sphere-filling method is also 
used in an algorithm for detecting collisions between the avatar and geometry, 
when collision avoidance is turned off. This provides users with an indication of 
geometry that restricts motion and thus area of focus for potential design changes.  

With respect to future work, objective validation using motion capture is 
ongoing, to verify the accuracy of the predicted postures. In addition, it is possible 
to predict postures, not just of body segments, but of body location and orientation. 
This capability will be tested with collision avoidance as well. Finally, the ability 
will be developed to fill geometry automatically as it is loaded. Then, only those 
spheres within an avatar’s immediate reach envelope will be considered for 
avoidance. 
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