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ABSTRACT 

Using multi-objective optimization, we develop a new 
human performance measure for direct optimization-
based posture prediction that incorporates three key 
factors associated with musculoskeletal discomfort: 1) 
the tendency to move different segments of the body 
sequentially, 2) the tendency to gravitate to a 
comfortable neutral position, and 3) the discomfort 
associated with moving while joints are near their 
respective limits.  This performance measure operates in 
real-time and provides realistic postures.  The results are 
viewed using Santos

TM
, an advanced virtual human, and 

they are validated using motion-capture.  This research 
lays groundwork for studying how and why humans 
move as they do. 

INTRODUCTION 

Virtual humans (avatars) that act and look like real 
humans offer a means to evaluate and test virtual 
prototypes without having to build an actual costly 
prototype.  This also reduces the design-cycle time for 
any product that requires human interaction.  In addition, 
accurate models that move as humans do enable one to 
study humans how and why humans move in a particular 
way, thus providing insight and data for ergonomic 
studies, injury prevention, and general human-centric 
design.  A key requirement of these virtual humans is the 
ability to predict postures quickly and realistically.  The 
most basic posture prediction problem entails having an 
avatar use a natural posture to contact a specified target 
point with an end-effector, which is a point of interest 
(typically the end-point in a series of links) on a 
kinematic system such as a human arm.  This paper 
focuses on an optimization-based approach in exploring 
such functionality. 

With an optimization-based approach, the joint angles 
for all of the degrees-of-freedom (DOFs) in the human 
model provide the design variables and are determined 
by optimizing an objective function that represents a 
human performance measure, such as discomfort.  In 
general, performance measures are metrics that govern 
how a virtual human moves, given a particular scenario.  
Since different measures can result in slightly different 

postures, a primary question concerning the 
optimization-based approach is which performance 
measure or combination of measures should be used as 
objective functions.  In general, this question can be 
addressed with the following three-stage process: 1) 
hypothesize that a physically significant (rather than 
purely mathematical) concept influences posture, 2) 
model that concept with a performance measure, 3) test 
the new performance measure in the context of the 
optimization problem, and 4) evaluate and/or validate the 
results.  In this way, the optimization-based approach 
enables one to study which factors govern human 
posture.  The appropriateness of a particular 
performance measure may depend on the task being 
completed.  In addition, multiple performance measures 
may need to be combined using multi-objective 
optimization (MOO).  However, this work addresses just 
one basis for posture prediction; it concerns initial steps 
towards modeling some components of discomfort.  
Essentially, the focus is on providing initial results for 
stage two of the above-mentioned process. 

We contend that posture is governed, in part, by 
musculoskeletal discomfort.  Although much research 
has been conducted that pertains to human discomfort, 
most of it involves evaluation experiments with human 
subjects.  Relatively little research has focused on 
providing a general predictive model for discomfort.  Of 
course, the concept of discomfort can be vague and 
subjective, varying from person to person, but it is 
possible to incorporate distinct factors that stem from the 
idea of discomfort, while the absolute value for 
discomfort is not necessarily consequential.  Thus, we 
present initial results with a new human performance 
measure that is based on the following three factors 
associated with discomfort: 1) the tendency to move 
different segments of the body sequentially, 2) the 
tendency to gravitate to a reasonably comfortable 
neutral position, and 3) the discomfort associated with 
moving while joints are near their respective limits.  The 
primary concern is with static discomfort, corresponding 
to an instantaneous posture.  In addition, environmental 
or psychological factors, such as ambient temperature, 
humidity, perception, fear, are not considered.  Rather, 
the emphasis is on factors related to the musculoskeletal 
system.  The proposed performance measure was 



introduced by Yang et al (2004) in the broader context of 
using MOO for posture prediction.  In this paper, we 
elaborate on the development, analysis, and testing of 
this measure.  Note that the absolute value for 
discomfort is not necessarily significant; we do not intend 
to quantify precisely the fuzzy idea of discomfort.  
Rather, we design a discomfort function that governs 
human posture. 

OVERVIEW OF THE PAPER 

This paper presents work towards a predictive 
discomfort model.  Although the consequent human 
performance measure does not require experimental 
data, it incorporates factors that have been shown to 
influence discomfort experimentally.  Discomfort is not 
the same as simple joint displacement, despite the 
semantic discrepancy in the literature.  Rather, the new 
performance measure is based on three different 
biomechanical concepts, and the effectiveness of 
incorporating these concepts is studied. 

The current literature is reviewed with respect to 
optimization-based posture prediction and discomfort.  
Then, before presenting the details of the proposed 
discomfort function, we present an overview of direct 
optimization-based posture prediction, including a 
description of the human model and an outline of the 
optimization formulation.  Then, MOO is leveraged in 
detailing the components of the performance measure.  
Finally, we discus the effectiveness of this performance 
measure and compare the results to those obtained with 
motion capture. 

LITERATURE REVIEW 

The focus of this paper concerns the incorporation of 
discomfort-related factors into a human performance 
measure for an optimization-based approach to posture 
prediction.  Consequently, a brief overview of 
approaches to posture prediction is provided, followed 
by a review of current literature pertaining to a direct 
optimization-based approach and to discomfort. 

POSTURE PREDICTION 

While a thorough review of methods for posture 
prediction is provided by Mi (2004), a brief overview is 
provided here.  There are two fundamental approaches 
to posture prediction.  First, one can predict posture 
based on prerecorded motion, anthropometric data, and 
functional regression models (Beck and Chaffin, 1992; 
Zhang and Chaffin, 1996; Farraway, 1997; Das and 
Behara, 1998; Faraway et al, 1999; Chaffin, 2002).  This 
approach has been used extensively with automotive 
seating evaluation and design (Reed et al, 1999, 2000a). 

Alternatively, one can use inverse kinematics to predict 
posture, without observed data.  There is a variety of 
approaches to inverse kinematics, one of the most a 
common of which is the pseudo-inverse method 
(Liegeois, 1977; Klein and Huang, 1983; Jung et al, 

1995).  Essentially, the solution (set of joint angles 
representing a posture) is determined iteratively using 
the pseudo-inverse of the Jacobian matrix, which 
represents the derivatives of the end-effector position 
with respect to the joint angles.  In addition, during each 
iteration, an optimization algorithm is run to minimize the 
deviation of the resolved posture from a predetermined 
reference posture.  Eventually, the algorithm converges 
on a final posture (set of joint angles).  Zhang et al 
(1998) incorporate optimization in a weighted pseudo-
inverse approach whereby the weights ere estimated 
such that the predicted motion approximates 
prerecorded motion.  Reed et al (2000b) also combine 
the use of optimization and experimental data by using 
an optimization prediction model with three DOFs to find 
a posture that approximates the data most accurately. 

It is possible to use optimization to determine a posture 
directly, without experimental data, and with only one run 
of the optimization algorithm.  Joint angles provide the 
design variables that are determined to minimize a 
human performance measure, subject to constraints 
concerning joint limits and the final position of the end-
effector.  We refer to this as a direct optimization-based 
approach.  It affords the virtual human a substantial 
amount of autonomy in reacting to infinitely many 
scenarios rather than using a finite set of recorded 
motions or postures.  In addition, it is applicable to 
human models with a relatively high number of DOFs, 
and it provides real-time predictions.  Consequently, the 
work in this paper builds on the advantages of this 
approach. 

Zhao and Badler (1994) provide one of the earliest 
works with the direct use of optimization for posture 
prediction.  A gradient-based optimization routine is used 
to minimize an objective function formed by the weighted 
sum of components that model various factors, such as 
the position of the end-effector (a specified point, line, or 
plain) or the orientation of the hands.  Limits on the joint 
angles are incorporated as constraints.  The work is 
demonstrated using a 22-DOF full-body virtual human.  
Riffard and Chedmail (1996) use a similar approach and 
determine the optimum placement of the torso and the 
optimum posture of a seven-DOF arm, using simulated 
annealing, which is a global optimization method.  
Equations for target contact, collision avoidance, vision, 
body-orientation, and torque are combined in a weighted 
sum to form the objective function. 

Yu (2001) uses joint displacement and potential energy 
as objective functions for a three-DOF arm, while the 
position of the end-effector is modeled as a constraint 
along with limits on eth joint angles.  Joint displacement 
is defined as follows: 
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where q is a vector of joint angles.  N

i
q  is the neutral 

position of a single joint, and the neutral position of the 

complete system, N
q , represents a relatively 

comfortable position.  With this formulation, the avatar’s 

position gravitates towards the neutral position.  w
i
 are 

scalar weights and are used to stress the importance of 
particular joints.  Mi et al (2002b) and Mi (2004) extend 
the work of Yu (2001) to a 15-DOF upper-body model 
with similar objective functions.  In addition, a real-time 
optimization algorithm is developed that combines 
genetic-algorithm results from a library of off-line 
computations with results from a faster unconstrained 
gradient-based algorithm. 

Although some work has been completed concerning the 
concept of optimization-based posture prediction, this 
approach depends heavily on the objective function, and 
relatively little work has been conducted that implements 
varied human performance measures.  In addition, 
human models with the optimization approach have 
been relatively simple, with few DOFs.  We respond to 
this deficiency by introducing a new performance 
measure with a high-DOF human model. 

DISCOMFORT 

There is an extensive amount of literature concerning 
discomfort, but most of it pertains to experimentation 
with subjective feedback provided by human subjects 
rather than predictive modeling (Redfern and Chaffin, 
1995; Olendorf and Drury, 2001; Monnier et al, 2002; 
Fehren et al, 2003).  In some cases, regression models 
are developed based on the experimental results 
(Chevalot and Wange, 2004; Moschandreas and 
Sofuoglu, 2004).  However, little work involves predictive 
mathematical modeling that does not depend on 
experimentation.  The experimental work has flushed out 
factors that contribute to discomfort, but these 
components have not yet been incorporated collectively 
in an effective optimization-based performance measure 
for use with virtual humans. 

Much work has been conducted involving discomfort that 
stems from factors outside the human body or unrelated 
to motion (Toftum et al, 2000; Hoppe, 2001; Fehren et 
al, 2003; Fisekis et al, 2003; Kaynakli and Kilic, 2005; 
Nagano and Horikoshi, 2005).  Da Silva (2002) provides 
a thorough review of environmental factors (thermal 
conditions, air quality, noise, etc.) that effect comfort in a 
vehicle.  However, this paper focuses on discomfort 
issues related to the musculoskeletal system. 

Shen and Galer (1993) determine that discomfort while 
sitting is multifaceted, depending on different 
components, including the relative position of the body 
joints with respect to the environment (i.e. a seat), the 
ability to alter the position of the joints over time, 
duration of a fixed posture, and applied pressure. 

Allread et al (1998) perform experiments to evaluate 
discomfort in manufacturing environments and find that 

overall total-body discomfort depends on external loads 
and on the nature of tasks that are being completed (i.e., 
lifting and moving objects).  Alternatively, discomfort in 
specific body parts depends on kinematics of the torso 
area.  Discomfort is often highest in the lumbar region 
and in the shoulder, implying that different segments of 
the body should be considered separately. 

Santos et al (2000) conduct experiments to correlate 
subjective indications of discomfort with biomedical 
indices that are evaluated using a 54-DOF motion-
capture model.  They find that discomfort increases as 
the distance between the human and the intended target 
point increases.  Reaching out from the body, as 
opposed to reaching across the body, results in the 
highest discomfort.  The authors find a linear relationship 
between discomfort and the following two biomedical 
indices: 1) the deviation from a neutral position, and 2) 
the moments in the muscles that are necessary to 
counter the effect of gravity.  Other authors also suggest 
that joint stresses and loads provide an additional factor 
for modeling discomfort (Kayis and Hoang, 1999; Bubb 
and Estermann, 2000). 

Zacher and Bubb (2004) draw similar conclusions with 
respect to a proposed force-based discomfort model.  
They find that discomfort depends on the magnitude and 
direction of forces at the joints.  In addition, discomfort is 
proportional to how close a joint angle is to its limits, i.e., 
the degree of flexion.  The authors suggest that overall 
discomfort is highly dependent on the maximum 
discomfort for a single body part.  This suggests that 
different joints should be viewed independently to some 
extent.  Chung et al (2002) also distinguish between the 
discomfort at each joint and the total-body discomfort, 
and they use a neural network to relate the two.  
Although limited to work with the wrists, Carey and 
Gallway (2002) also find a correlation between 
discomfort and extreme flexion. 

Zhang (1996) suggests that comfort and discomfort 
should be treated as different but complementary 
quantities, finding that discomfort tends to be associated 
with biomechanical factors, whereas comfort is 
associated with “feelings of relaxation and well-being.”  
With respect to sitting, Shen and Vertiz (1997) refine the 
general concept of comfort, also contrasting it with 
discomfort and suggested that comfort is a temporal 
quantity.  In this paper, since we are concerned only with 
static posture prediction, we are concerned only with 
static, instantaneous discomfort. 

In addition to the above-mentioned experimental work, 
some work has been completed with the development of 
discomfort-based human models, although the 
representation of discomfort in this capacity and the 
models themselves are limited.  Jung et al (1994) 
provide one of the first mathematical metrics for 
discomfort.  Drawing on the work of Liegeois (1977), 
who uses the pseudo-inverse method for motion 
prediction of a six-DOF robot, the authors essentially use 
a normalized form of (1) with each component of the 



neutral position determined as the center angle for each 
joint.  They refer to this as discomfort (as opposed to 
joint displacement), and it is based on the idea that 
discomfort for the arm reaches a minimum 
approximately when each joint is at its center angle 
(Cruse et al, 1990).  This form of discomfort is used with 
a two-dimensional, four-DOF human model that is based 
on inverse kinematics.  Jung and Choe (1996) extend 
the work of Jung et al (1994) to a three-dimensional, 
seven-DOF human model, with externally applied forces.  
Again, a regression model is used to create a discomfort 
function.  Yu (2001), Mi et al (2002), and Mi (2004) use a 
similar concept for discomfort, although the term joint 
displacement is used.  In this case, the weights are 
based on trial-and-error. 

Although substantial research concerning the nature of 
discomfort exists, little work has been completed 
towards developing a general discomfort model that can 
be incorporated in an optimization-based posture 
prediction algorithm.  We argue that although (1) is a 
common and necessary ingredient for modeling 
discomfort, conceptually, it is incomplete and yields an 
overly simple model.  Additional factors should be 
considered.   

OVERVIEW OF OPTIMIZATION-BASE POSTURE 

PREDICTION 

Simulating human posture depends largely on how the 
human skeleton is modeled, so we briefly describe the 
model that provides the foundation for this study.  A 
skeleton can be viewed as a kinematic system, a series 
of links with each pair of links connected by one or more 
revolute joints.  Therefore, a complete human body can 
be modeled as several kinematic chains, formed by 
series of links and revolute joints, as shown in Figure 1. 
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Figure 1: A Kinematic Chain of Joints 

i
q  is a joint angle and represents the rotation of a single 

revolute joint.  There is one joint angle for each DOF.  

[ ]1
, ,

T n

n
q q R= ∈q …  is the vector of joint angles in an n-

DOF model and represents a specific posture.  Each 
skeletal joint is modeled using one, two, or three 

kinematic revolute joints.  ( ) 3
R∈x q  is the position vector 

in Cartesian space that describes the location of the 
end-effector as a function of the joint angles, with 
respect to the global coordinate system.  An end-effector 
is a point of interest on a kinematic chain, and in this 
case, the end-effector is the tip of the index finger.  For a 
given set of joint angles q, the position of the end-

effector in Cartesian space ( ) 3
R∈x q , is determined 

using the Denavit-Hartenberg method (Denavit and 
Hartenberg, 1955). 

With this study, a 21-DOF model for the human torso 
and right arm is used and is shown in Figure 2, where 

each cylinder represents a rotational DOF.  
1
q  through 

12
q  represent the spine.  

13
q  through 

17
q  represent the 

shoulder and clavicle.  
18
q  through 

21
q  represent the 

right arm.  The link lengths between each of the joints 
are variable and can be set based on anthropometric 
data, thus representing various population variations.  
The same is true of the masses for various body 
segments. 

 

Figure 2: 21-DOF Kinematic Model 

OPTIMIZATION PROBLEM FORMULATION 

The posture of the above-described model can be 
determined by solving the optimization problem 
presented in this section.  The design variables for the 

final optimization problem are 
i
q , measured in units of 

degrees.  The vector q represents the consequent 
posture.  Because listing values for all of the joint angles 
with each predicted posture can be cumbersome and 
unrevealing, results are depicted with actual pictures of 
the avatar. 

The first constraint, called the distance constraint, 
requires the end-effector to contact the target point.  In 
addition, each joint angle is constrained to lie within 

predetermined limits.  U

i
q  represents the upper limit for 

i
q , and L

i
q  represents the lower limit.  These limits 

ensure that the virtual human adheres to natural 



restrictions on joints and does not assume an unrealistic 
posture. 

The optimum posture for the 21-DOF system shown in 
Figure 2 is determined by solving the following problem: 

Find: DOF
R∈q  (3) 

to minimize: ( )Discomfortf q  

subject to: ( )
end-effector target point

distance ε= − ≤x q x  

;  1, 2, ,
L U

i i i
q q q i DOF≤ ≤ = …  

where ε  is a small positive number that approximates 

zero.  (3) is solved using the software SNOPT (Gill et al, 
2002), which uses a sequential quadratic programming 
algorithm.  Analytical gradients are determined for the 
objective function and for all constraints. 

DEVELOPMENT OF A DISCOMFORT 

PERFORMANCE MEASURE 

We view the development of the discomfort performance 
measure in terms of MOO.  Therefore, before discussing 
the details of the measure, we provide a brief overview 
of MOO.  Each component of the final discomfort 
function (involving a single joint angle) is referred to as a 
joint term, an example of which is given in (2).  Each 
joint term constitutes a separate, individual objective 
function.  The general MOO problem is posed as follows: 

Find: DOF
R∈q  (4) 

to minimize: ( ) ( ) ( ) ( )1 1 2 2

T

k k
f q f q f q=   f q �  

subject to: ( ) 0   1, 2, ,
i

g i m≤ =q �  

where k is the number of objective functions and m is the 

number of inequality constraints.  ( ) k
E∈f q  is a vector of 

joint terms ( )
i i
f q .  Given a set of concepts that relate to 

the idea of discomfort and that must be incorporated in a 
model, one must determine the most effective form of 

( )
i i
f q  and how to incorporate these functions in (4). 

The idea of a solution for (4), where multiple objectives 
may conflict with one another (e.g., what minimizes one 
function may increase another), can be unclear.  
Consequently, the idea of Pareto optimality is used to 
describe solutions for MOO problems.  A solution point is 
Pareto optimal if it is not possible to move from that point 
and improve at least one objective function without 
detriment to any other objective function.  Typically, 
there are infinitely many Pareto optimal solutions for a 
MOO problem.  Thus, it is often necessary to incorporate 
user preferences in order to determine or select a single 

suitable solution.  With methods that incorporate a priori 
articulation of preferences, the user indicates the relative 
importance of the objective functions or desired goals 
before running the optimization algorithm.  Different 
methods allow one to articulate preferences in different 
ways, but the most common approach is to have the 
user set parameters such as the weights in (1). 

DISCOMFORT FACTORS 

Using the idea of MOO, three key factors are 
incorporated in the proposed performance measure.  In 
order to incorporate the first factor, the tendency to move 
different segments of the body sequentially, we base the 
discomfort function on the lexicographic method for 
MOO, which is discussed in detail by Marler and Arora 
(2004).  With the lexicographic method, one simply 
prioritizes the objectives rather than articulating 
preferences with weights that indicate the relative 
importance of individual objective functions as shown in 
(1).  Then, one objective at a time is minimized in a 
sequence of separate optimization problems.  After an 
objective has been minimized, it is incorporated as a 
constraint in the subsequent problems.  By using the 
concept behind the lexicographic method, one is able to 
model the idea that groups of joints are utilized 
sequentially.  That is, in an effort to reach a particular 
target point, one first uses one’s arm.  Then, only if 
necessary, does one bend the torso.  Finally, if the target 
is still out of reach, one may exercise the clavicle joint.  
Essentially, different groups of joints are included in one 
of three objective functions (one for the arm, torso, and 
clavicle), which are then optimized lexicographically.  
However, solving a sequence of optimization problems 
can be time consuming and impractical for real-time 
applications.  Miettinen (1999) and Romero (2000) 
suggest that the weighted sum method can be used to 
approximate results of the lexicographic method if the 
weights have infinitely different orders of magnitude.  
This is the approach taken with the proposed discomfort 
function. 

The weights 
i

γ , that are used to approximate the 

lexicographic approach, are shown in Table 1.   

Joint Variables 
i

γ  

1 12
, ,q q�  4

1 10×

13 14
,q q  8

1 10×  

15 21
, ,q q…  1 

Table 1: Joint Weights for Discomfort 

There is one 
i

γ  associated with each joint variable, but 

only three different values.  Although weights are used, 
they do not need to be determined as indicators of the 
relative significance of their respective joints; they are 
simply fixed mathematical parameters.  The exact values 
of the weights are irrelevant; they simply have to have 
significantly different orders of magnitude.  An additional 
benefit is that this approach avoids computational 



difficulties associated with discontinuous values for the 
weights in (1), which are common in the literature. 

The second discomfort factor, the tendency to gravitate 
to a reasonably comfortable neutral position, is 
incorporated by using the weights in Table 1 with a 
function that is based loosely on (1) with the neutral 
position representing a posture with the arms straight 
down, parallel to the torso.  Note that for this model, the 
neutral position is chosen based on observations of the 
skinned model in Figure 3 rather than on a skeletal 
model like the one shown in Figure 2.  As argued by 
Marler and Arora (2005, in press), objective functions 
should be normalized when weights are incorporated a 
priori.  Consequently, prior to applying the weights, each 
joint term is normalized as follows: 

 
N

norm i i
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q q

−
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With this normalization scheme, each term ( )
2

norm

i
q∆  

acts as an individual objective function and has values 
between zero and one.  The final aggregated discomfort 
function is given as follows: 

 ( ) ( )
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norm

Discomfort i i

i

f qγ

=
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where 
i

γ  are the weights defined in Table 1. 

Generally, (6) is effective in modeling the tendency to 
move body segments sequentially and the tendency to 
gravitate towards a neutral position.  However, it often 
results in postures with joints extended to their limits, 
and such postures can be uncomfortable and unrealistic.  
Consequently, to rectify this problem and to incorporate 
the final factor, the discomfort associated with moving 
while joints are near their respective limits, specially 
designed penalty terms are added to the discomfort 
function.  Consequently, the modeled discomfort 
increases significantly as joint values approach their 
limits.  The final discomfort function is given as follows: 
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where G QU×  is a penalty term associated with joint 

values that approach their upper limits, and G QL×  is a 

penalty term associated with joint values that approach 
their lower limits.  Each penalty term varies between 
zero and G, as the following two terms vary between 
zero and one: 

 ( ) ( )U U L

i i i i
q q q q− −  (10) 

 ( ) ( )L U L

i i i i
q q q q− −  (11) 

Figure 3 illustrates the curve for the following function, 
which represents the basic structure of the penalty 
terms: 

 ( )( )
100

0.5 5.0 1.571 1Q sin r= + +  (12) 

 

Figure 3: Graph of Discomfort Joint-Limit Penalty Term 

r represents either the expression in (10) or (11).  Thus, 
as Figure 4 illustrates, the penalty term has a value of 
zero until the joint value reaches the upper or lower 10% 
of its range.  The curve for the penalty term is 
differentiable, and it reaches its maximum penalty value 

of 6
10G =  when 0r = . 

RESULTS 

In general, when various target points are considered, 
the proposed discomfort function provides realistic 
results, where basic validation is performed using visual 
comparison between predicted postures and postures 
determined using an eight-camera Vicon motion-capture 
system.  The specific results shown in this section, which 
illustrate some differences between predicted postures 
and captured postures, provide particularly interesting 
insight into human posture. 

Figures 4 through 6 show results when the discomfort 
function is used to predict posture, given a target point to 
be touched with the right index finger.  The results are 
illustrated using Santos

TM
, an advanced virtual human 



based on the kind of skeleton discussed with respect to 
Figure 2.  The virtual human (Santos

TM
) in the dark 

shorts represents the predicted posture, and the virtual 
human in the light shorts represents the posture 
obtained with the motion capture system.  Note that the 
nuances of skin deflection are not addressed.  In fact, 
deformation in the stomach (Figure 6) is not necessarily 
an indication of discomfort. 

Predicted Posture Motion CapturePredicted Posture Motion Capture
  

Figure 4: Results with Front Right Target Point 

 
Predicted Posture Motion CapturePredicted Posture Motion Capture

 

Figure 5: Results with Front Lower Target Point 

Predicted Posture Motion Capture
 

Figure 6: Results with Back Target Point 

With these preliminary results, one motion-capture 
subject is used for basic validation of the predicted 
posture.  Markers are placed on the subject, and joint 
angles are determined based on the final position of the 
markers.  These joint angles are then input into the 
virtual human model to yield a representation of the 
captured posture.  Minor differences between the 
position of the end-effector for the predicted posture and 
the captured posture, stem from differences in the 
proportions of the motion-capture subject and Santos

TM
.  

Nonetheless, the overall forms of the two postures (one 
with the motion-capture subject and one with Santos

TM
) 

are comparable and revealing. 

In Figure 4, the primary difference between the two 
postures is the height of the elbow.  The elbow for the 
captured posture is lower than the elbow for the 
predicted posture.  However, we found that this can 
depend in part, on the starting point (posture) for the 
motion-capture subject.  With these tests, the subject 
started from the neutral position, where discomfort is 
essentially zero.  However, when the subject began with 
both arms extended vertically, the final posture mimicked 
the predicted posture in Figure 4.  This supports the idea 
behind another human performance measure called 
effort, which is modeled as follows (Yu, 2001; Mi et al, 
2002): 

 ( ) ( )
1

2
DOF

Effort i

i

initial

i i
f w q q

=

= −∑q  (13) 



(13) is similar to (1) except that an initial position I

i
q  is 

used in place of the neutral position N

i
q .  Whereas N

q  

represents a generally comfortable position, I
q  

represents the initial posture of the avatar before a new 
posture is predicted.  Consequently, postures resulting 
from (13) depend on the virtual human’s starting posture 
and tend to gravitate towards that posture.  In addition, 
initial studies have shown that when the discomfort 
function is coupled with a form of potential energy using 
MOO, the resulting predicted posture tends to have a 
slightly lower and more realistic elbow position (Marler, 
2005). 

In Figure 5, the predicted results involve a twist in the 
waist.  This is because the legs in the model are fixed, 
so a twist in the waist is necessary to reach the target 
point.  The motion-capture subject, however, was able to 
adjust the waist and ankles for balance and extended 
reach.  This discrepancy between the two postures 
indicates the significance of modeling balance even for 
static posture prediction. 

Figure 6 illustrates two distinctly different postures, but 
this does not necessarily reflect a deficiency in the 
discomfort function.  In terms of skeletal mechanics, the 
predicted posture is relatively comfortable, because 
joints in the torso and shoulder are not forced to 
approach their limits.  The captured posture appears to 
be slightly more reasonable only because one typically 
strives to see the target.  Note that the eyes and neck 
are not incorporated in this posture prediction model.  In 
this sense, no form of musculoskeletal discomfort is 
ideal for predicting postures that involve target points 
behind the avatar. 

CONCLUSION 

In this paper, we have introduced a new human 
performance measure for optimization-based posture 
prediction.  The optimization-based approach facilitates 
the study of how and why people move the way they do, 
and by modeling specific factors hypothesized to govern 
posture, we are able to study the significance of such 
components.  By leveraging the idea of multi-objective 
optimization, we have incorporated in the new 
performance measure three key factors that are 
associated with musculoskeletal discomfort: 1) the 
tendency to gravitate to a comfortable neutral position, 
2) the tendency to move different segments of the body 
sequentially, and 3) the tendency to avoid postures 
where joints approach their limits.  The consequent 
discomfort function generally yields realistic and 
acceptable postures, resulting in a successful feasibility 
study.  We have highlighted examples that shed light on 
the nature of human posture. 

The proposed performance measure depends on the 
selected neutral position and yields postures that tend to 
gravitate towards this datum.  Alternate neutral positions 
can be used for different scenarios that dictate different 

sets or classes of postures.  In fact, this datum provides 
a means for tailoring the discomfort function to a 
particular type of task.  For instance, sitting would 
require a neutral position different from standing. 

An added feature of the proposed performance measure 
is inherent self-avoidance, which entails the ability of the 
virtual human to avoid unrealistic intersections between 
different body segments.  Addressing this issue can be 
extremely complex, but the penalty associated with joint 
limits provides a natural approximate guard against such 
inaccuracies. 

The emphasis of this work has been on predicting static 
posture rather than precisely modeling discomfort.  We 
have incorporated key components that effect posture 
and that are typically tied to discomfort.  In doing so, we 
have discovered opportunities for additional work, much 
of which is ongoing.  Vision can play a significant role in 
dictating posture, especially with target points behind the 
avatar.  Thus, although it is not directly associated with 
musculoskeletal discomfort, it should be considered 
when predicting posture.  In addition, incorporating joint 
torques could provide a physically significant substitute 
for the penalty that is associated with joint-angle limits.  
Modeling joint torques would also respond to 
experimental work that suggests that joint stresses and 
loads provide an additional factor for modeling 
discomfort. 

The idea of modeling balance is typically associated with 
dynamic gait analysis.  However, we have shown that 
balance can play a role in posture prediction as well, and 
work with a dynamic balance and gait model is ongoing.  
The work presented in this paper suggests that coupling 
the proposed discomfort function with other performance 
measures such as joint displacement, effort, or potential 
energy could be advantageous.  In fact, Yang et al 
(2004) provide an initial study of incorporating MOO in 
this way.  More extensive motion-capture studies and 
statistical analysis will provide additional validation 
studies for the predicted postures.  In addition, the 
relative values for discomfort, given a variety of target 
points and consequent postures, will be validated with 
subjective evaluation of motion-capture subjects. 
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