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Abstract: A validation framework is introduced in this work to evaluate the 
motion of a predictive human model and provide feedback to the model 
developers for refinement in ergonomic applications. Two qualitative and two 
quantitative benchmark tests were designed and used to assess the strength and 
weakness of the model and to localise abnormalities in the predicted motion. 
Twelve subjects participated in a whole-body motion task, and another 12 
subjects participated in the subjective evaluation of the predicted motion. The 
validation framework was able to highlight the weakness and limitations of a 
predicted human model with 55 degrees of freedom in a box-lifting task. The 
results have shown that the proposed framework was very effective in 
identifying the flaws in the model under investigation and in giving guides for 
improvement and acceptance. 
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predictive-human model; ergonomics; human factors; virtual interactive design; 
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1 Introduction 

Many biomechanical models have been developed to predict human biomechanics for 
real-life applications (Granata and Marras, 1993; Adams and Dolan, 1995; Chadwick and 
Nicol, 2000; Faber et al., 2007; Arjmand et al., 2009; Garg and Kapellusch, 2009; Waters 
and Garg, 2010). Those simulation algorithms in one way or another use motion 
supported by libraries of databases (Choi et al., 2003; Thelen and Anderson, 2006; 
Erdemir et al., 2007; Hoozemans et al., 2008; Burgess et al., 2009). Some approaches use 
predicted motions that are based on an optimisation problem formulated by defining 
appropriate performance measures and constraints to recover the real motion of a 
biomechanical system (Anderson and Pandy, 2001; Chevallereau and Aoustin, 2001; Gill 
et al., 2002; Mu and Wu, 2003; Saidouni and Bessonnet, 2003; Ren et al., 2007; Kim  
et al., 2008; Xiang et al., 2009a). 

A validated predictive human model will open the door to conducting unlimited tests 
of various combinations of loads, motions, and body anthropometries for numerous 
ergonomics studies and will contribute considerably to the development of human 
biomechanics research. Approaches to validating predictive human-model motion 
(Marras and Sommerich, 1991; Blankevoort and Huiskes, 1996; Rabuffetti and Baroni, 
1999; Karduna et al., 2001; Robert et al., 2007; Dubowsky et al., 2008; Abdoli-Eramaki 
et al., 2009; Chaffin, 2009) have been very effective in assisting the development and the 
acceptance of the models. Generally, most existing validation methodologies of computer 
human models are designed for specific usage/tasks and usually target a certain area of 
the human body or use a low-fidelity human model with a limited number of links and 
joints. 

In the current work, a framework to validate the predicted motion of a whole-body 
task is introduced. The proposed validation framework is based on four benchmark tests 
to characterise the conditions under which the upper and lower body motions are 
considered acceptable. The first two benchmark tests are based on qualitative 
comparisons and are used to construct a general perception about the normality of the 
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motion. Also, they act as checkpoints and signs for the model developers to either move 
forward through the following quantitative comparisons or go back to the work table and 
search for better prediction approaches. The last two benchmark tests are based on 
quantitative comparisons and provide critical and detailed information about the quality 
of the model in general and the weaknesses at specific local locations. The latter tests also 
impose tighter passing conditions for the model testing and improvement. In this work, 
the validation framework is applied to a box-lifting prediction model of a whole-body 
human computer model with a large number of degrees of freedom (DOF), and the 
corresponding results are presented. 

2 Validation methodology 

The proposed validation methodology involves testing the ability of predicted models to 
pass effectively and consecutively through four benchmark tests comprising two 
qualitative and two quantitative tests. In general, the benchmark tests depicted in Figure 1 
are ordered in increasing levels of strictness of conformity and validation effort. During 
the first benchmark, subjects observe and compare movies simultaneously played back by 
two avatars. One avatar uses experimental data, and the second avatar uses predictive 
data. The second benchmark involves subjectively comparing the general shape of the 
joint angle time histories for the experimental and predicted avatars. The third and the 
fourth benchmarks quantitatively compare the joint angle time histories of selected joints 
that play major roles in the task based on statistical metrics. All benchmarks are 
considered valuable because substantial effort could be saved if the predicted motions 
could be configured during the early benchmark tests. 

The proposed validation methodology performs each benchmark test by comparing 
the predicted motions against the average motions obtained by performing experiments 
for the same task. In order to compare the experimental and simulation results, the 
experimental 3D displacement data acquired by the motion capture system is first 
transformed from the Cartesian space to the joint space using a global optimisation-based 
inverse kinematics scheme (Lu and O’Connor, 1999). Due to the large amount of 
information in the resulting motion, the validation process becomes cumbersome. 
Therefore, the current validation methodology considers a subset of the full DOF set for 
the comparison. This subset is called task determinants (TD) and includes the joint angles 
that play a major role in accomplishing the task (Saunders et al., 1953; Hsiang et al., 
1999; Lin et al., 1999). Furthermore, the validation methodology considers a more 
restrictive subspace of these TD at selected distinct key-frames (DKF) from the TD time 
history. The DKF represent the magnitude of the determinants at critical well-defined 
frames in the determinants’ time history, such as the magnitude of the knee angle at 0%, 
20%, 40%, 60%, 80%, and 100% of the lifting height. In addition to validating the 
kinematics of the motion, the proposed validation methodology also checks the kinetics 
of the motion. 
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Figure 1 Flow chart of the validation framework represented by the four benchmark tests ordered 
in increasing level of strictness of conformity 

 

2.1 Qualitative comparison 

The objective of this early stage in the validation process is to assess the normality of the 
predicted motion in general subjective terms before proceeding to the more thorough 
detailed comparisons. This stage is composed of the first two benchmark tests (Figure 1). 
In the first benchmark test, 12 subjects observed two videos of a box-lifting task being 
performed by two similar virtual avatars; one video played back the results from 
predicted lifting motion and the other played back the results from the experimental 
lifting motion. The subjects had no knowledge regarding the identity of the avatars. Some 
of the subjects were familiar with the DHM, but most subjects were not. The subjects 
who were familiar with the model were non-technical people. The subjects evaluated the 
level of motion normality of the two videos by drawing a line crossing a straight  
line-scale ranging from abnormal to normal motion (Aitken, 1969). The subjects did not 
have the capacity to play with the software and watch the animation from different 
angles. This was done to minimise the differences in the subjects’ performance due to 
their background and to have them focus on the motion only. The results of this stage 
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elucidate whether or not the model reasonably simulates normal motion. This test 
provides information to the model developers to either proceed through the subsequent 
tighter benchmark tests or go back and refine the model at specified locations. At this 
stage, substantial time and effort were saved since the motion of only one subject was 
recorded to create the video. In the second qualitative benchmark, a relatively more 
detailed subjective comparison is conducted at the TD level. The comparison in this case 
was performed on the kinetics and kinematics of each predicted determinant and its 
derivatives. This is done by subjectively comparing the general shape of the predicted 
determinants with that of the normal determinants in the time domain. The results of this 
stage will reveal if there are major discrepancies between the model and the experimental 
determinants. 

2.2 Quantitative comparison 

This stage includes the last two benchmark tests depicted in Figure 1. It comprises 
rigorous statistical comparisons between the magnitude of the predicted and normal 
lifting determinants. While the first qualitative stage presented in the previous section 
could include some unintentional bias, the current quantitative comparison stage requires 
tighter conditions and has less bias involved as the decision is made based on the 
database of the task under validation and the accuracy needed for a certain application. 
The first benchmark of this stage tests if the predicted time history magnitude of the TD 
follows the magnitude of the mean of the normal subjects and falls within the 95th 
percentile interval of confidence. The second and final benchmark of this stage is 
designed to statically determine, using the coefficient of determination R2, the degree of 
correlation between the predicted and experimental TD at DKF. 

2.3 Application to a predictive-lifting model 

This section presents a brief description of a predictive model that is used in this work as 
an example to demonstrate the effectiveness of the proposed validation framework. The 
model predicts the motion of various joints and the ground reaction forces during the 
lifting by solving an optimisation problem. In this optimisation problem, both the motion 
and the forces that cause the motion are unknown and treated as design variables. The 
basic idea is to minimise an objective function such as the dynamic effort, which is 
defined as the time integral of the squares of all joint torques, subjected to physical 
constraints such as joint limits, torque limits, ground penetration, foot locations, and 
balance (Xiang et al., 2010). 

In the current simulation, the symmetric lifting task is defined as moving a heavy box 
from an initial location to a final location. Figure 2 depicts the input parameters for the 
proposed formulation. In this regard, h1 is the initial height of the box measured from the 
ground, d1 is the initial distance measured from the ankle location to the centre of the 
box, h2 is the final height measured from the ground, d2 is the final distance, and w is the 
weight of the box. The predictive model under investigation predicts the motion of 
various joints and the ground reaction forces during the lifting. 
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Figure 2 Input parameters for the predicted lifting task (see online version for colours) 

 

3 Method 

3.1 Participants 

Twelve subjects participated in the subjective evaluation of the predicted motion, and 
another 12 subjects participated in the testing of a whole-body motion task. The first 12 
subjects were asked to watch movies of two avatars, one driven by simulation data and 
one driven by experimental data, and then to evaluate their motion normality. The second 
12 subjects (eight healthy males and four healthy females) were involved in the 
experimentation of the materials-lifting task. The subjects had no history of 
musculoskeletal problems and were reasonably fit. Their participation was voluntary, and 
a written informed consent, as approved by the University of Iowa Institutional Review 
Board, was obtained prior to testing. The height of the subject population for the 
materials lifting task was 175.6 +/– 11.5 cm with a weight of 73.2 +/– 10.7 kg and age of 
21.8 +/– 4.3 yrs. 

3.2 Experimental procedure 

3.2.1 Lifting task description 

Subjects were instructed to stand in a neutral position, referred to as the T-pose  
(Figure 3), which corresponds to the initial joint angles and segment locations of the 
skeleton. The T18 pose is defined as standing with feet shoulder width apart and parallel, 
and with arms raised parallel to the floor in the transverse plane and lateral to the body in 
the frontal plane. Palms face forward with the elbows maximally extended and the 
olecranon process pointed towards the ground. It is well-known that subjects may use 
different lifting strategies depending on their strength and their perception of the load 
(Bartlett et al., 2007; Li and Zhang, 2009). In this work, participants were aware of the 
weight of the box (20 lb for males and 15 lb for females) and were shown proper 
material-lifting strategies to avoid any unexpected harmful strategy. They were then 
instructed to lift a box from the standing surface to shoulder height in their most natural 
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or comfortable way (Burgess-Limerick et al., 1995). Adequate warm up and rest time was 
allotted. 

Figure 3 A subject in a T-pose position (see online version for colours) 

 

3.2.2 Measurements and data collection 

Natural human motion was collected using a system of 16 infrared cameras (Motion 
Analysis Corporation, Santa Rosa, CA) with a peak capture rate of 200 Hz to track the 
motion of 53 passive reflective markers at 100 frames per second. Reflective markers 
were placed to highlight anatomical landmarks (Cappozzo et al., 1995; Della Croce et al., 
1999). 

Based on the literature (Saunders et al., 1953; Hsiang et al., 1999; Lin et al., 1999; 
Neumann et al., 2001) and a fair understanding of the lifting process, six determinants 
(trunk flexion, shoulder flexion, elbow flexion, hip flexion, knee flexion/extension, and 
ankle plantar/dorsiflexion) were identified as the major contributors to the overall box-
lifting motion. 

Predictive model results are expressed in terms of joint space; therefore, direct 
comparison becomes more convenient after transforming the experimental data from the 
Cartesian space to the joint space using inverse kinematics (IK) (Lu and O’Connor,  
1999; Oyama et al., 2001; Roux et al., 2002; Wu et al., 2004; Nicolas et al., 2007;  
van den Bogert and Su, 2008). 

3.2.3 Inverse kinematics 

Due to the geometrical complexity of the current skeleton model and the involvement of 
the lower and upper body segments during the lifting process, the usage of commercial 
software, such as Vicon, Motion Analysis, and Visual3D, for the calculation of joint 
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angles for direct comparison purposes with the predicted model is possible but becomes 
cumbersome at many DOF. This is because of the incompatibility between the 
commercial software model and the current skeleton model, not only in terms of the 
direction and orientation of the joint axes, but also in terms of the total number of joints, 
as well as the inability of these commercial software programmes to animate the current 
skeleton model using joint angles. To circumvent these problems, an in-house IK scheme 
is introduced to correlate the adjacent joint’s local coordinate systems, based on the 
geometry of a skeleton similar to that of the model, and expressed by a DH table (Xiang 
et al., 2009a, 2009b). The ability to animate the current skeleton using joint angles is an 
essential component of the first stage of the proposed validation methodology. Due to the 
high degree of redundancy, a large-scale sequential quadratic programming (SQP) 
approach in SNOPT (Gill et al., 2002) was used inside the in-house IK to solve a global 
(considering the whole-body) optimisation problem subjected to the joint-limit 
constraints. 

4 Results 

4.1 Qualitative comparison 

Twelve participants participated in the first benchmark test to observe and evaluate two 
videos of animated avatars. One avatar was animated using experimental data and the 
other was animated using predicted data. The participants were asked to report their 
scores based on what they consider a natural human lifting motion. Figure 4 shows a 
comparison of the rating scores for both avatars. The coefficient of correlation (r) 
between the experimental and simulation rate was 0.692729. 

Figure 4 Subjective rating to the motion normality of two similar avatars; one is driven b 
simulation motion and the other is driven by experimental data 
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Figure 5 Box-lifting experimental results, (a) shapes of the lifting determinants (grey lines 
represent experiments while the dark-solid line represents prediction curves) (b) 
Coupling between the shoulder flexion motion with hip flexion, knee flexion, ankle 
flexion, trunk flexion, and elbow flexion during lifting 

 
(a) 

 
(b) 
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Figure 6 Comparison between (a) the velocity and (b) the acceleration of the box-lifting 
determinants of the 12 subjects and the predicted model 

 
(a) 

 
(b) 
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For the second benchmark, Figure 5(a) shows that the predicted determinant-curve 
shapes, except for the ankle flexion, for lifting during the lifting cycle have general 
shapes that closely followed the individual 12 subjects. Figure 5(b) demonstrates the 
coupling strength between one of the predicted determinants, shoulder flexion as an 
example, with other TD. As can be seen in the figure, the predicted shoulder flexion 
determinant has followed to some extent the trend of coupling between the determinants 
of the natural subjects. Again, the predicted ankle flexion showed weak correlation with 
the experiments. 

Figure 6(a) demonstrates a comparison between the velocity of the lifting 
determinants of the 12 subjects and the model. As can be seen from the figure, the shape 
of the predicted model velocity is similar to that of the subjects for the torso and hip. 
However, there are fewer local fluctuations in the predicted TD. The shape of the rest of 
the determinants was somehow different. The calculated acceleration showed behaviour 
similar to that of the velocity as depicted in Figure 6(b); however, more local fluctuations 
appeared in the experimental curves. For kinetics, Figure 7 shows the experimental and 
predicted vertical and forward ground reaction forces during lifting. As can be seen from 
Figure 7, the predicted model showed behaviours similar to those of the experimental 
data but was not able to capture the initial characteristics of the lifting cycle. 

Figure 7 Ground reaction forces in the vertical direction during the box-lifting cycle 

 

Note: Dashed grey curve represents experimental results while solid dark curve 
represents the predicted results. 

4.2 Quantitative comparison 

The comparison between the experimental and the predicted TD in terms of the interval 
of confidence are presented in Figure 8. The experimental data for each subject represents 
the average of two lifting cycles. The model determinants show weak correlation for the 
ankle and the shoulder flexions; however, they show reasonable correlation and 
agreement with the human subjects for the rest of the determinants, by being inside the 
interval of confidence and following the trajectories of the subjects’ determinants.  
Figure 9 depicts the R2 plot for the six TD for the DKF shown in Figure 10. The circle 
shape in Figure 9 represents the relationship between the simulation data and the average 
experimental data of the hip flexion of 12 subjects. Other symbols represent the relation 
for the rest of the determinants. 
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Figure 8 95% confidence intervals of box-lifting determinants (region between the dashed lines), 
subjects’ mean (solid grey line), and predictive model (solid dark line) 

 

Figure 9 R2 plot for the six lifting determinants at the six selected key-frames: the vertical axis 
(in degrees) stands for predicted data, and the horizontal axis (in degrees) corresponds 
to the average experimental data 
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Figure 10 Selected key frames during lifting, (a) predicted model key frames (b) experimental 
model key frames (see online version for colours) 

 
(a) 

 
(b) 

5 Discussion 

A framework to validate the motion of predictive computer human models is presented in 
this work. The framework was applied, as an example, to a predictive computer human 
model with 55 DOF performing a box-lifting task. The framework is based on four 
benchmark tests comprising two qualitative and two quantitative benchmark tests. The 
results for the first qualitative benchmark test (which demonstrates subjective 
comparisons by observing videos of the simulated and experimental models) have shown 
a reasonable correlation between the experimental and the predictive models with an (r) 
value of 0.692729. 

The subjective evaluation may not give information that is as accurate or specific as 
that obtained by the objective evaluation, but it can give some expectations to the 
modeller that the objective measure cannot provide. For example, the subjective measure 
can present how realistically the whole-body is moving during the task. It also presents 
images that may help in finding or localising unnatural behaviours at certain joints that 
could be hard to observe by just looking to the data coming from the objective evaluation. 
The authors found that the subjective assessment was very useful for the modeller, 
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especially when the motion is far from natural, or the strategy of the task is different from 
what the model predicts. While the subjective assessment gives general information, it 
can still point out specific problems that can inform the quantitative assessment. For 
example, major differences in the whole-body motion will make the modeller think about 
a different objective function. Or a major problem at a joint will make the modeller add, 
delete, or relax some constraints at these joints. 

As shown in Figure 4, some participants gave low scores to the experimentally driven 
avatar. One reason behind this poor evaluation is related to the difficulties associated with 
the level of visual perceptions and deception of the virtual world to the observer eyes. 
Another reason behind this rating could be attributed to the way the avatar looks. As can 
be seen in Figure 10, the avatars used for the animation have very detailed realistic skin 
and human-like features. These features may distract the attention of the observers and 
cause them to unintentionally check other irrelevant avatar attributes. For example, the 
participants were asked to focus on and evaluate the lifting determinants, but some 
participants commented on the way the avatar’s head was moving. In general, the first 
benchmark test provided significant information about the acceptance of the model; 
however, it elucidates limited information regarding the accuracy of the determinants. 
This is because the model has a large DOF with strong coupling between the 
determinants, which makes it very hard for normal eyes to differentiate between the 
predicted and experimental determinants. 

The results of the second qualitative benchmark test have shown some similarity 
between the shapes of the predicted and human TD as shown in Figure 5 and Figure 6. 
However, the model showed poor performance in following the shape of the ankle and 
shoulder flexions during the lifting cycle. The predicted model showed some potential for 
capturing the coupling between the TD as shown in Figure 5(b), with some poor 
performance in capturing the coupling between the shoulder and the ankle. The 
importance of this benchmark test is to detect major discrepancies, if there are any. 
Additionally, this test can identify any abnormal characteristics in the shape of the 
determinants’ time history during the lifting cycle. 

In terms of the quantitative comparison in the third benchmark test, the predicted 
lifting motion showed a reasonable correlation with the experimental data (Figure 8), 
where all determinants, except the shoulder flexion-extension and the ankle flexion 
angles, stayed inside the interval of confidence at all times and, notably, followed the 
mean of the subjects. The shoulder flexion-extension angle showed acceptable correlation 
during the first half of the lifting cycle, but poorly represents human characteristics 
during the second half of the motion cycle (Figure 8). One main issue in these 
discrepancies could be related to the model accuracy, where the experimental data was 
collected from real human with muscles and skin movement, while the model is based on 
a rigid-body dynamics assumption. The discrepancies may also be due in part to the 
absence of the necessary constraints on the complex shoulder motion in the model and in 
part to the difficulties associated with computing accurate shoulder joints from the 
experimental data. The discrepancies could be attributed to other parameters such as the 
complex interaction of the shoulder-clavicle complex motion and the motion of the wrists 
when the box is extended above chest level while maintaining the feet touching the floor. 
The ankle flexion showed similar behaviours to those of the shoulder flexion. 

Unlike other human motion tasks that require a single common strategy, such as 
walking, the box-lifting task can be conducted using different strategies; therefore, the 
whole motion looks natural but the determinants’ shapes could be affected by the 



   

 

   

   
 

   

   

 

   

    A validation framework for predictive human models 15    
 

    
 
 

   

   
 

   

   

 

   

       
 

coupling and the speed associated with the strategy being used. As can be seen from 
Figure 7, the model inadequately captured the early stages in the lifting process, which 
could involve different speeds and different lifting strategies; still, the model succeeded 
in capturing the following steady-state phase for both legs. It should be noted here that 
the ground reaction forces for box lifting were based on one subject and may be not 
sufficient to be used for the model kinetics validation due to the uncertainty in the lifting 
strategy and the possibility of the subjects leaning laterally. Therefore, the reaction forces 
at the hands should also be measured and used in the comparison. However, in this work 
we considered symmetrical lifting and assumed equal distribution of the forces on the 
hands and the legs. 

For the key-frame in the fourth and last quantitative benchmark test, Figure 9 
demonstrates the correlation between the experimental and simulated determinants with 
R2 extended from 0.72 to 0.98 for most determinants with the exception of the shoulder 
flexion. As mentioned earlier, the shoulder performed adequately during the first half of 
the lifting cycle (Figure 8); however, the coupling between the shoulder-clavicle motion, 
the stretching in the trunk, the twisting in the wrists, and the additional motion from the 
lower extremity may have affected the results shown in Figure 8. For these reasons, the 
graph for the shoulder extension, shown in dashed lines in Figure 9, has been divided into 
two segments representing the first and second halves of the lifting cycle. Interestingly, in 
the first qualitative benchmark test, most subjects did not observe any abnormality in the 
shoulder motion because it is too local. 

The determinant’s velocity for the predicted model showed similar characteristics to 
those of the subject population, except for the shoulder and ankle. The predicted model 
could not capture the higher-frequency components, represented by the local fluctuation 
in the velocity. Normally, natural human motion is relatively smooth and the local 
fluctuations, shown in Figure 5(a), are anomalies that may represent some type of 
numerical noise as a result of the finite differences calculation, or because of the local 
movement of the reflective markers due to skin motion (Lucchetti et al., 1998; Garling  
et al., 2007; Anderson et al., 2010). To circumvent this problem and for the sake of the 
velocity and acceleration calculations, the displacement curves were curve-fitted using  
B-spline functions. What has been shown and applied to velocity seems to be applicable 
to the acceleration, as shown in Figure 6(b). 

The proposed validation framework showed that the predictive lifting model 
considered in this work can predict to a certain level human motion during box lifting, 
but the model still needs additional work to capture the characteristics of the natural 
human motion. The proposed method was able to localise the problems in the model and 
showed that the model has difficulties in capturing some aspects of the task dynamics like 
the initial ground reaction force profile as well as some of the task kinematics like the 
ankle and shoulder flexion profiles. The results from this validation framework were used 
to locate specific abnormal characteristics in the motion determinants and to provide 
feedback to the developers for further refinement of the predicted lifting task. 

One major contribution to the proposed validation framework is in its feedback to the 
modeller. For example, where there is a major difference between the predicted and 
human motion, the modellers will think to revise their formulation and try different 
objective functions in their optimisation schemes. If unrealistic motion is occurring at a 
certain joint, the modeller may realise that they are missing an important physical 
constraints, or they need to relax or tight the constraints. Because humans used different 
strategies when conducting their tasks, the proposed method will help the modeller to 
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capture that. For example, for the current box-lifting task the subjective evaluation 
showed that the whole-body motion of the predicted model [Figure 10(a)] looks different 
than the whole-body motion of the experimental model [Figure 10(b)] for the key frames 
0% height, 20% height, and 40% height. In this case, the objective evaluation (Figure 8) 
may not have the capacity or the information to capture that, because the discrepancies in 
the motion may show in parts of some of the determinants. The latter is very clear in the 
hip flexion, knee flexion, torso flexion, and shoulder flexion of Figure 8, as these 
determinants were outside the interval of confidence for the first 40% of the cycle. This is 
a good example for showing the significance of having the objective and subjective 
evaluations in the proposed framework. In this article, the proposed validation framework 
was applied to a generic predictive lifting model; however, the method is general and can 
be applied to any predicted model to validate its kinematics and kinetics. 
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