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ABSTRACT 

Over the past several years, significant advances have 
been made in the area of posture prediction. However, 
to make simulations more useful for vehicle design, 
additional unique tools are needed. This research 
focuses on the development of one such tool, called 
zone differentiation. This new tool allows user to 
visualize not only the complete reach envelope but also 
the interior comfort levels of the envelope. It uses a color 
map to display the relative values of various 
performance measures (i.e. comfort) at points 
surrounding an avatar.  This is done by leveraging an 
optimization-based approach to posture prediction.    
Using this tool, a vehicle designer can visually display 
the impact that the placement of a control (switch, 
button, etc.) has on a driver’s postural comfort. The 
comfort values are displayed in a manner similar to how 
a finite element analysis (FEA) programs display stress 
and strain results.  The development of this tool requires 
two main components. First, both the simulated postures 
and the resultant comfort levels are correlated against 
actual experimental results. Second, the software tools 
needed to calculate and display the comfort zones, as 
well as the graphical user interface are developed. 
 
Keywords: Reach envelope, comfort model, zone 
differentiation, feeling scale. 
 
INTRODUCTION 

Reach envelopes are key tools for vehicle interior 
package design.  They provide criteria for the vehicle 
designer and have been studied extensively for several 
decades.  Despite the usefulness of reach envelopes, 
they are insufficient, because they do not supply enough 
information to the designer.  Alternatively, a zone 
differentiation tool, such as the one developed in this 
paper, does more than simply indicate which points are 
accessible.  It actually evaluates the contents of the 

reach envelope. For every point within the reach 
envelope, a posture is predicted using a new 
optimization-based approach such that the virtual human 
contacts the specified point. The final optimum value for 
the objective function in that optimization problem 
provides performance-measure values that correspond 
to discomfort. Then, we correlate this discomfort to 
comfort levels. Consequently, a zone differentiation tool 
provides additional utility for layout design of controls, 
buttons, etc.  Such a tool shows different colors for 
different comfort levels within the reach envelope.  In 
fact, zone differentiation tools can ultimately present 3D 
contour plots for a variety of human performance 
measures such as energy, effort, joint placement, etc.  
Vehicle designs based on this kind of tool improve 
comfort and safety. 
 
This paper is an extension of our pilot study on zone 
differentiation (Yang et al., 2007a, 2007b).  We first 
summarize the optimization-based approach to posture 
prediction, which is the basis for the zone differentiation 
tool.  This includes the mathematical feeling model used 
to represent discomfort as a performance measure.  
Then, we summarize the experimental protocol used to 
gather actual comfort data in terms of a subjective 
feeling scale, and we correlate the experimental data 
with results from the mathematical model.  Note that this 
correlation does not constitute a data-based model; the 
predicted postures used to analyze the zone do not 
depend on prerecorded data. Rather, the correlation 
approach transforms the numerical values of the 
performance-measure (discomfort) to correspond with a 
specified pre-existing scale (comfort). Although the 
general nature of discomfort is modeled mathematically, 
the actual absolute values and range of a discomfort 
scale vary from user to user, and we provide a means to 
accommodate this variability. Finally, we develop a 
volumetric visualization interface for the comfort level 
data within the reach envelope. The final zone 
differentiation tool has three new features. The first 
feature allows the user to visualize zones gradually from 



low to high resolution because the data is presented in 
increasing resolution as it is available. The second 
feature allows the user to visualize zones interactively 
via three orthogonal cutting planes.  The third feature 
allows the user to change the transparency of the 
displayed zones so that the related design surfaces can 
be seen more clearly. 
 
LITERATURE REVIEW 
 
Based on the initial proposed novel idea about 
workspace zone differentiation  (Yang et al., 2007a, 
2007b), this research focuses on the complete package 
development of zone differentiation tool. However, 
considerable work has been completed with respect to 
reach envelopes, which are byproducts of the zones. In 
addition, an integral component of the zone 
differentiation tool is the performance measure used to 
evaluate the points within the reach envelope. Although 
a variety of measures can be used, in this paper, we 
focus on one form of comfort.  Consequently, in addition 
to reviewing the state of the art with reach envelopes, an 
overview of work with comfort/discomfort modeling is 
provided. 
 
With respect to reach envelope, several approaches 
have been investigated.  The first one is the data-driven 
method (Hammond and Roe, 1972; Badler, 1997; 
Chaffin, 2002; Reed et al., 2003; and Parkinson et al., 
2003). It need collect thousands of subjects to do the 
experiment and visualize the collected data in the form 
of isosurfaces. The second school is the voxel-based 
method (Troy and Guerin, 2004) and the software was 
developed. This method includes representing the swept 
object by voxels, then generating motion voxelization, 
voxel shell, finally launching tessellation.  The third is the 
closed-form solution (Abdel-Malek et al., 2001; Sharma 
et al., 2004; Yang et al., 2004a, 2004b; and Yang et al., 
2005a, 2005b). This model is limited to six degrees of 
freedom. The fourth is the probabilistic method (Venema 
and Hannaford, 2001) but it is also tedious to collect 
data. Each approach has its pros and cons.  The data-
driven method is directly from statistical data and is the 
correct answer. However, it is time-consuming.  The 
voxel-based method is fast, but it can generate holes in 
the reach envelope. The closed-form method is a 
general one for all percentiles, but the procedures to 
determine the singular surfaces are time-consuming. 
The probabilistic approach represents a statistical 
model; however, obtaining the answer is also time 
consuming. In general, the closed-form method can be 
used to generate reach envelopes of human fingers 
corresponding to any reference points on human bodies. 
 
Within the human factors/ergonomics community, many 
researchers have investigated methods to measure or 
quantify comfort or discomfort, though they define 
comfort/discomfort differently.  The majority of the work 
that has been completed on comfort and discomfort has 
been experimental in nature. In addition, the 
experimental work tends to focus on specific tasks 
and/or specific body parts (Pan and Schleifer, 1996; Lin 

et al., 1997; Happee et al., 2000; O’Sullivan and 
Gallwey, 2005).  Cruse et al. (1990) use psychophysical 
experiments to develop mathematical comfort functions 
at the wrist, elbow, and shoulder.  Their comfort function 
is in implicit form and depends on the joint angle and the 
muscle forces necessary to perform a task.  The 
maximum comfort is regarded as the minimum 
discomfort.  The discomfort cost generally takes the form 
of U-shaped curves depending on joint angles.  Jung et 
al.  (1994) provide a normalized joint displacement 
function as an approximation of joint discomfort.  The 
formulation is based on the idea that discomfort for the 
arm reaches a minimum approximately when each joint 
is at its center angle.  Jung and Choe (1996) extend this 
work and use a regression model to create another 
discomfort function.  Zacher and Bubb (2004) propose a 
discomfort model based on joint angles and forces.  
They find that discomfort depends on the magnitude and 
direction of forces at the joints.  In addition, discomfort is 
proportional to how close a joint angle is to its limits, i.e., 
the degree of flexion. The authors suggest that overall 
discomfort is highly dependent on the maximum 
discomfort for a single body part. This suggests that 
different joints should be viewed independently to some 
extent. Their discomfort model is a three-dimensional 
surface function of each joint displacement. Marler et al. 
(2005) provide a closed form of musculoskeletal 
discomfort. This model involves three factors: (1) the 
tendency to gravitate to a reasonably comfortable 
position, (2) the tendency to move body segments in 
sequence (i.e., move the arm, then the torso if 
necessary, and then the clavicle), and (3) the tendency 
to avoid postures where ligaments and/or tendons are 
stretched. In this work, we use multiobjective 
optimization (MOO) to combine the musculoskeletal 
discomfort (Marler et al. 2005) with a vision performance 
measure (Marler et al. 2006) and an energy performance 
measure (Yang et al., 2004b; Marler et al. in press) to 
yield a general indication of comfort. Based on above 
different human performance measures we developed a 
new mathematical feeling model for discomfort, and we 
refer to this as the MOO function. 
 
MATHEMATICAL FEELING MODEL 

The zone differentiation tool is essentially a tool for 1) 
systematically analyzing a series of points and 2) 
communicating the results of analysis. This section 
addresses the method by which the points are analyzed 
and the mathematical feeling model (MOO function).  
The following section will discuss how these numerical 
results are correlated with subjective feeling scale that is 
dictated by experimentation. 

We leverage a new optimization-based approach to 
posture prediction (Yang et al, 2006). The design 
variables for this problem are joint angles, measured in 
units of radians. iq  is a joint angle and represents the 
rotation of a single revolute joint with respect to a local 
coordinate system.  There is one joint angle for each 

degree of freedom (DOF). [ ]1 , ,
T n

nq q R= ∈q K  is the 



vector of joint angles in an n-DOF model and represents 
a specific posture.  ( ) 3∈ Rx q  is the position vector in 

Cartesian space that describes the location of the end-
effector as a function of the joint angles, with respect to 
a global coordinate system.  For a given set of joint 
angles q, ( )x q  is determined using the Denavit-

Hartenberg (DH)-method.  The DH-method essentially 
allows one to work with either joint space or Cartesian 
space. 

With this approach, the constraints are modeled 
independently.  The first fundamental constraint, called 
the distance constraint, requires the end-effector to 
contact a target point target pointx . In addition, each joint 
angle is constrained to lie within predetermined limits.  

U
iq  represents the upper limit for iq , and L

iq  represents 
the lower limit. These limits are derived from 
anthropometric data.  Additional constraints can be used 
depending on the task being modeled. 

The objective function for the optimization formulation is 
a human performance measure and is a function of the 
joint angles.  Based on the validation study by Marler et 
al (2007) and Yang et al. 2007), we combine 
musculoskeletal discomfort (Marler et al., 2005a), visual 
displacement (Marler et al., 2006), and potential energy 
(Marler, 2005).  These functions are combined using 
MOO (Yang et al., 2004b; Marler et al., 2005), and the 
consequent aggregated function represents a new more 
complete mathematical model of discomfort. 

The optimum posture for the human system shown in is 
then determined by solving the following problem using 
any number of algorithms for constrained optimization: 

   Find: DOFR∈q   (1) 

   to minimize: ( )qMathematical Feeling Model  

    subject to: ( ) ε= − ≤x q x
end-effector target pointdistance  

;  1, 2, ,L U
i i iq q q i DOF≤ ≤ = …  

where ε  is a small positive number that approximates 
zero. 
 
CORRELATION OF COMFORT MODEL 

Given the performance-value results provided by solving 
(1), we now discuss how these simulation results are 
correlated with experimental results. The absolute value 
of feeling model in (1) is not critical; rather, the relative 
values associated with various target points within the 
reach envelope are important for evaluating the relative 
discomfort associated with the different points.  
Nonetheless, comfort is typically evaluated subjectively, 
often with respect to a preconceived scale. In addition, 
the mathematical feeling model refers to discomfort, but 
the subjective values in the experiment are comfort. 
Therefore, it is necessary to develop transformation 
methods such that the performance measure used in 
this study can be used with any predetermined scale. 

 
SUBJECTIVE FEELING SCALE  
 
A series of motion-capture experiments were run 
primarily to validate the predictive results from the 
optimization-based posture-prediction approach, and 
Yang et al. (2007c) and Marler et al. (2007) detail this 
validation effort.  However, the experimental results also 
provide significant absolute-values and ranges for a 
subjective feeling scale. 
 
In the experiments, we have 11 subjects from four 
different percentiles (AF05, AF50, AM50, and AM95), 
and each subject is instructed to perform four reaching 
tasks (Fig. 1).  Task 1 requires reaching the point at the 
top of the A-pillar, which is a relatively simple task.  Task 
2 requires reaching the radio tuner button, a slightly 
difficult task.  Task 3 requires reaching the glove box 
handle, and task 4 requires reaching a point on the 
driver’s B-pillar seatbelt adjuster, both of which are 
slightly more difficult tasks.  The average comfort/feeling 
level for each task was recorded on a scale of 1 to 10, 
with values greater than 5 indicating an acceptable 
comfort condition. 
 

  
Fig. 1 Four in-vehicle tasks 

 
CORRELATION OF THE MODEL 
 
When solving (1), the assumption is that the absolute 
values are not significant but that the relative values are 
important.  That means we chose the minimum feeling 
rating as the upper limit of the MOO function in (1), and 
the maximum rating as the lower limit of MOO function.  
These limits are determined analytically.  Generally, the 
values for the mathematical feeling model range 
between 0 and 2,000 (0 refers to the tasks with the 
greatest comfort values; 2,000 refers to the tasks with 
the greatest discomfort values).  However, the range of 
the subjective feeling scale is from 0 to 10 (0 refers to 
the task with the highest discomfort, 10 to the task with 
the highest comfort). It is obvious that these two systems 
are different and that we have to correlate them to make 
sure the zones generated by the mathematical model 
are realistic. Fig. 2 demonstrates the differences 
between the two scales. The mathematical feeling model 
is non-linear, and the subjective scale is linear. 
 
In the correlation process, we use a direct mapping 
method, which is shown in Table 1. Essentially, 
simulation values (for the mathematical model) are 
mapped to specific values for the feeling scale. This 
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mapping can be altered by the user, depending on 
commonly accepted practices. 
 

Fig. 2 Transformation from the mathematical 
the subjective feeling scale 

 
There are of course, multiple maps that can be used to 
transform values for the simulated discomfort to the 
range of comfort values used in the subjective scale.  
Consequently, it is necessary to verify that the schem
provides in Table 1 is in fact acceptable. It is necessary 
to verify that after correlating the two scales, that the 
simulated discomfort values are desirably mapped to the 
experimental comfort values. 
 
In order to verify the simulated results, it is necessary to 
aggregate the experimental data. As indicated, four 
anthropometric cross sections (percentiles) are 
considered, and for each percentile, three subjects were 
used.  Thus, the data is evaluated in three forms.  First, 
each individual is evaluated independently, and we refer 
to this as individual group.  Second, the results (comfort 
values) for each target within one percentile are 
averaged. This yields four values (one for each target) 
for each of the four cross sections and is labeled 
population group. Third, the results (comfort values) 
each target are averaged regardless of the percentiles
This results in one value for each target and represents 
overall group. 
 

2R  is used as the criterion for the correlation

regression results are 2 0.550R =  for individual group
2 0.841R =  for population group, and 2R

overall group (Figs. 3-5).  
 
In general, the above plots suggest successful 
correletion between the experimental data and the 
simulation values.  In the individual 

2 0.550R =  and is less than 0.7.  This can be 
misleading because experimental data for each 
participant is more subjective.  We should not reply on 
individual group; instead, we should consider the 
average of subjects within a percentile, which

the population group.  2R  is larger than 0.7 within the 
population group. This suggests that the mapping rules 
are reasonable for the four tasks. 
 
Table 1 Mapping rules 

Simulation Value <5.0 5.0~17.0 17.0~40.0 40.0~100.0

Subjective value 9 7.5 6.5 5.5

altered by the user, depending on 

 
2 Transformation from the mathematical model to 

There are of course, multiple maps that can be used to 
transform values for the simulated discomfort to the 
range of comfort values used in the subjective scale.  
Consequently, it is necessary to verify that the scheme 
provides in Table 1 is in fact acceptable. It is necessary 
to verify that after correlating the two scales, that the 
simulated discomfort values are desirably mapped to the 
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Fig. 3 Correlation results for individual group
 

Fig. 4 Correlation results for population group
 

Fig. 5 Correlation results for overall group
 
ZONE DIFFERENTIATION 

The zone differentiation tool is a tool for visualizing 
zones with different human performance measures or a 
combination of them in 3D space around a 
Zone differentiation can determine how effectively a 
subject reaches space around him/her
tool in the analysis of designs that involve user 
interaction.  The users first choose a reference point for 
the subject—for example, the
the user selects the human performance measures or a 
combination of them, a resolution in which to show the 
zones, the number of colors for the zones, and the types 
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3 Correlation results for individual group 

 
results for population group 

 
5 Correlation results for overall group 

 TOOL 

The zone differentiation tool is a tool for visualizing 
zones with different human performance measures or a 
combination of them in 3D space around a subject.  
Zone differentiation can determine how effectively a 
subject reaches space around him/her.  This is a useful 
tool in the analysis of designs that involve user 

The users first choose a reference point for 
for example, the waist or shoulder.  Then, 

the user selects the human performance measures or a 
combination of them, a resolution in which to show the 
zones, the number of colors for the zones, and the types 
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of colors.  The user can visualize zones in different 
colors that correspond to comfort levels.  In this section, 
we present the structural components of the zone 
differentiation software and the capabilities and features 
of the zone differentiation tool. 
 
The zone differentiation (ZD) software tool involves a 
collection of smaller components working together
6 shows the flowchart of zone differentiation
following list briefly explains several components 
presently in use within our zone differentiation system:
(1) Posture prediction.  Posture prediction is the 

component of the zone differentiation tool and 
computes performance measure values while 
predicting realistic human postures using an 
optimization-based approach.   

(2) LibZone library.  LibZone library is another major 
component of the zone differentiation tool
primarily transforms performance measure values 
into visual information.    

(3) ZD shared library.  This is a shared library used by 
both LibZone and the Virtools zone differentiation 
building block to communicate with each other, 
where Virtools provides a real-time interactive 
environment with superior graphics and complex 
interactivity.  This library is implemented as a 
standard Win32 Dynamic Link Library. 

(4) ZD building block.  This Virtools building block works 
as an interface between the combined
posture prediction and LibZone, which collectively 
generates numerical values and computes 
visualization information, and Virtools, which 
presents the information in visual form to the user

ZD parameters building block. This Virtools building 
block is similar to the ZD building block, but it performs 
more user- and display-centric processes such as 
allowing the user to change the transparency of zone 
differentiation visualization or apply user-specified color 
profiles to zone differentiation visualization
represent spacial information around a subject, ZD 
employs 3D volume textures.  A 3D texture is similar to a 
2D array of pixels except with a third dimension
texture is essentially represented as a 2D array of pixels
Similarly, a 3D texture is an array of 2D textures or a 3D 
array of voxels.  Voxels in this 3D texture are mapped to 
the units of space around a subject.  These units are 
arbitrary and are the same units used to represent link 
lengths of body segments in the posture pre
example, a length of 5 cm along a certain axis can be 
represented as 5 voxels on the same axis.  
the 3D volume texture is made to coincide with the origin 
of the subject.  Since locations within a 3D texture are 
represented only on the positive axis, we need to 
transform the center of the volume texture to the origin of 
the subject.  For example, to store the value of a human 
performance measure at location (x, y, z) in the subject 
3D space, we go to location (xc + x, yc + y, z
the texture and store the human performance measure 

The user can visualize zones in different 
In this section, 

we present the structural components of the zone 
differentiation software and the capabilities and features 

The zone differentiation (ZD) software tool involves a 
on of smaller components working together.  Fig. 
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presents the information in visual form to the user.   

This Virtools building 
lock is similar to the ZD building block, but it performs 

centric processes such as 
allowing the user to change the transparency of zone 
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lengths of body segments in the posture prediction.  For 
example, a length of 5 cm along a certain axis can be 
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the 3D volume texture is made to coincide with the origin 

Since locations within a 3D texture are 
on the positive axis, we need to 

the volume texture to the origin of 
For example, to store the value of a human 

in the subject 
+ y, zc + z) within 

the texture and store the human performance measure 

value.  (xc, yc, zc) represents the center of the volume 
texture, and xc=yc=zc=resolution/2
texture can be used to represent points in a space that 
extends 128 units in each direction on each of the three 
axes. 
 

Fig. 6 Components of zone differentiation
 
Posture prediction then computes the performance
measure values at the coordinate locations of each of 
the voxels in this 3D texture
places the computed performance
the appropriate locations within this 3D texture
this calculation proceeds, LibZone keeps updating the 
shared data blocks in the ZD shared library so that they 
become available to external components like the ZD 
building block. 
 
We use a 32-bit floating point texture to store values in 
our 3D texture.  This texture format is not directly 
displayable on screen; therefore, a hardware shader is 
used to convert floating point information into colors
This format for textures provides us with the flexibility of 
storing high-precision results in our 3D textures
enables us to make the coloring process completely 
confined within the hardware shader.
 
The information stored in shared blocks by LibZone 
during the computation process is used by the ZD 
building block to provide feedback to the user
building block provides information such as the total 
number of points to be computed, the total number of 
points completed, the estimated time left, and various 
other such values.  Since the zone differentiation 
process takes several days to complete, it is critical to 
present this information to the user.
 
Finally, the ZD parameters building block allows the user 
to control how the data visualization is performed in 
ways.  First, it generates the hardware shader used to 
render the visualization based on the colors chosen by 

represents the center of the volume 
resolution/2.  This way, a 2563 

texture can be used to represent points in a space that 
direction on each of the three 

 
6 Components of zone differentiation 

Posture prediction then computes the performance-
measure values at the coordinate locations of each of 
the voxels in this 3D texture.  The LibZone module 

d performance-measure values at 
the appropriate locations within this 3D texture.  While 
this calculation proceeds, LibZone keeps updating the 
shared data blocks in the ZD shared library so that they 
become available to external components like the ZD 

bit floating point texture to store values in 
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Since the zone differentiation 
process takes several days to complete, it is critical to 
present this information to the user. 

Finally, the ZD parameters building block allows the user 
to control how the data visualization is performed in two 

First, it generates the hardware shader used to 
render the visualization based on the colors chosen by 



the user, also called the color profiles.  Second, it allows 
the user to change the transparency of the visualization 
so that the user can see inside the volume. 
 
The computation process can take a long time to finish.  
Therefore, we devised an approach that allows the user 
to monitor the progress visually.  We compute a series of 
textures, each increasing in resolution from the last by a 
power of two.  This is done essentially to provide the 
user with appropriate feedback considering the amount 
of time it will take to complete the zone differentiation 
calculations. 
 
Note that the user has the flexibility to specify a target 
resolution for the visualization.   In other words, if the 
user thinks that it might take a long time to compute a 
zone differentiation computation to the finest level of 
detail, and such fidelity is not necessary for the task at 
hand, then the user can specify a relatively low target 
resolution for the visualization.  As soon as the 
computation reaches this target resolution, the 
computations stop.  For instance, if the user thinks that a 
323 volume provides enough detail, the user can specify 
32 as the target resolution.   The computation will stop 
as soon as the computation process gets done with the 
323 texture. 
 
EXAMPLES 

In this section, we demonstrate the zone differentiation 
tool using a single subject.  This tool has several 
features.  First, the user can run the tool to visualize 
zones from low to high resolution rather than waiting for 
all the final data to be available.  As described in the 
section above, running the posture prediction for the 
whole workspace with a high resolution (2563) takes 
more than one day.  To avoid having the user wait for 
the final zones while nothing comes out for a long time, 
we developed this functionality so the user can visualize 
the raw results from the beginning and then gradually, as 
more target points are added, visualize the progress and 
more accurate results.  The second feature is that the 
user can slide the three orthogonal cutting planes 
through the workspace intuitively.  The third feature is 
that the user can change the transparency of the zones 
using the slider bar. 
 
Figs. 7 through 12 show snapshots of zones gradually 
changing with the increased resolutions. 
 
Fig. 13 shows the zones with different cross section 
positions of the first sliding plane within the workspace.  
Similarly, we can slide other cutting planes to visualize 
zones in Figs. 14 and 15. 
 
Fig. 16 shows the transparent zones by an interactive 
slider bar.  This feature is useful when the user uses the 
tool in the crowded environment of the product design. 
 

 
Fig. 7 Resolution with 4x4x4     

 

 
Fig. 8 Resolution with 8x8x8 

 

 
Fig. 9 Resolution with 16x16x16     

 

 
Fig. 10 Resolution with 32x32x32 

 



 
Fig. 11 Resolution with 64x64x64   

 

 
Fig. 12 Resolution with 128x128x128 

 

 
 

 
 

 
 

Fig. 13 Resolution with 128x128x128 with the cutting 
plane 1 in a new position 

 

  
 

 
 

 
 

Fig. 14 Resolution with 128x128x128 with the cutting 
plane 2 in a new position 

 



  
 

 
 

 
 

Fig. 15 Resolution with 128x128x128 with the cutting 
plane 3 in a new position 

 

 
Fig. 16 Zones with transparency 

 

CONCLUSION 

The primary contribution of this work has been the 
development of a new zone differentiation tool that 
leverages a novel approach to posture prediction and 
extends the current applications for common reach 
envelopes.  This development involves efficient methods 
for handling extremely large sets of data. It also involves 
elegant methods for communicating the results of 
complex analysis. The result is a unique tool for product 
design and layout design. The user can not only choose 
different colors for the zones, but can also use different 
levels of transparency to visualize the zones. This tool 
has two important features: the ability to vary resolution 
and the ability to move cutting planes. In general, this 
real-time tool provides significant momentum for human 
centric design in a variety of fields. 
 
In developing this tool, we have also presented a direct 
mapping method for correlating feeling scales. We have 
shown that a mathematical feeling model can be 
accurately transformed to a subjective feeling rating.  
However, we find that one should not use the individual 
group to judge the correlation efficiency, because the 
comfort levels are subjective for individuals.  Rather, one 
should average the values within a percentile. The 
population group is the correct one to use to evaluate 
the correlation results. 
 
Developing a means of correlating analytical results with 
current evaluation methods (subjective feeling scales) 
raises an interesting issue with regards to evaluating 
comfort. The components of the mathematical model are 
physically significant derived from biomechanical 
concepts. The primary intent of this model is to predict 
human posture accurately, when the model is 
implemented in (1). As suggested, the absolutely values 
of the objective function in (1) are irrelevant with regards 
to this intent. However, when posture prediction is used 
in the context of zone differentiation, one must consider 
the ultimate application. Ultimately, a designer will need 
specific cut-off values for analysis, indicating, for 
example where a control can be placed without being 
too uncomfortable. These values may be specified by 
the user/designer, or they maybe stipulated based on 
policies or past experience.  In either case, these cut-off 
values are presumably related to the impressions of a 
customer, someone that uses the product being 
designed. However, while the trends in perceived 
discomfort can be similar for a customer as they are for 
the mathematical model, the absolute values (and thus 
the cut-off values) depend heavily on a basis for 
comparison. That is to say discomfort is always relative.  
When the mathematical model is used with a virtual 
human to evaluate different targets, discomfort values 
are determined relative to the maximum possible value 
of the objective function in (1). This maximum value is 
based on a sound biomechanical model. However, when 
a customer indicates the relative discomfort of different 
targets, it is difficult if not impossible to tell what the 
basis of comparison is. One person may rate the 
discomfort of various targets based on the target that is 



most uncomfortable to touch, while another customer 
may rate comfort based on some unknown extreme 
condition (i.e. a past injury). Consequently, basing 
designs on subjective data can be difficult and risky.  A 
sound mathematical biomechanical model, such as the 
one used for this study, provides a more consistent 
means for human centric design. 
 
Based on the features of this tool, a variety of potential 
areas for future work have surfaced. The tool should be 
extended to allow the user to: (1) visualize other human 
performance measures such as joint displacement, delta 
potential energy, and visual displacement, (2) move a 
previously generated zone differentiation envelope 
around in space and intersect it with existing design 
surfaces to see whether the designed surfaces work out, 
(3) choose a reference point on the body and visualize 
the zone differentiation from the end-effector (e.g., hand) 
to that reference point, and (4) visualize zone 
differentiation for other limbs such as legs and fingers. 
 
Research is ongoing to consider more parameters within 
the mathematical feeling model, such as joint torques.  
The ultimate goal is to develop an accurate and 
complete package to visualize the zone differentiation of 
humans based on postural comfort. 
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