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ABSTRACT 

Inverse Kinematics on a human model combined with 
optimization provides a powerful tool to predict realistic 
human postures.  A human posture prediction tool brings 
up the need for greater flexibility for the user, as well as 
efficient computation performance.  This paper 
demonstrates new methods that were developed for the 
application of digital human simulation as a software 
package by allowing for any number of user specified 
end-effectors and increasing communication efficiency 
for posture prediction.  The posture prediction package 
for the digital human, SantosTM, uses optimization 
constrained by end-effectors on the body with targets in 
the environment, along with variable cost functions that 
are minimized, to solve for all joint angles in a human 
body.  This results in realistic human postures which can 
be used to create optimal designs for things that humans 
can physically interact with.  Previously the end-effectors 
could only be specified in relation to the left and right 
wrist and ankle joints.  Since the tool was still in 
developmental phases, communication between the 
software used to visualize the digital human and 
environment was done through file I/O.  A new 
optimization method has been developed and 
implemented to allow for any number of user specified 
end-effectors, which can be in relation to any joint in the 
body.  Each end-effector can be constrained to any 
individual target in the environment, which allows for 
much more flexible interface for a user to define the 
boundaries of predicting human posture.  
Communication speeds were increased on average by 
almost six times through the use of creating a shared 
memory block, which can be accessed by posture 
prediction code and the application to visualize the 
resulting postures at the same time.  The combined 
results of these additional features for posture prediction 
allow for dynamically updating and visualizing of posture 
prediction results as new targets for any part of the 
human body are created or changed in the environment.  
This in turn provides a new intuitive method for creating 
a posture prediction simulation which is more interactive 
with the user. 

 

INTRODUCTION 

A key element with human modeling and thus with 
product design is posture prediction.  Posture Prediction 
gives the ability to predict human posture accurately and 
quickly and then provides posture-related feedback to 
the user.  In response to this need, The Virtual Soldier 
Research (VSR) Program has developed an 
optimization-based approach to posture prediction that 
operates in real time and includes a variety of features.  
This paper presents two new advances with 
optimization-based posture prediction. First, a method 
for specifying end-effectors anywhere on the body was 
developed.  Secondly, a technique was utilized for 
leveraging shared memory as a method of 
communication between the posture prediction code and 
the user interface, which substantially reduces the total 
communication time.  Combining the two advancements 
allows a user to manipulate any point on an avatar in 
real time, while all other components of the avatar are 
simultaneously governed by posture prediction.  The 
result is a powerful new product for human-centric 
design. 

Predicting human posture is often limited by the location 
of end-effectors. End-effectors are points of interest on 
the avatar and are typically constrained to specified 
locations in the avatar’s environment.  When end-
effectors are only related to the end of link segments, 
such as the wrists and ankles, the user is limited to 
conducting posture prediction studies with which the 
avatar touches targets with only the hands or feet.  As 
computer aided product design become more popular in 
an effort to reduce physical prototypes, and thus save 
money and time, there is a growing need for more 
advanced posture prediction simulations that go beyond 
using points on the hands and feet as end-effectors. 

Since posture prediction is the key feature that the 
application described in this paper advances, a brief 
overview of different posture prediction approaches and 
advances is provided first.  Currently, there are two 
fundamental approaches to predicting postures, on the 
research side as well with commercially available tools.  
One method predicts what human posture looks like 
based on prerecorded motion capture, anthropometric 



data, and functional regression models (Beck and 
Chaffin, 1992; Zhang and Chaffin, 1996; Faraway, 1997; 
Das and Behara, 1998; Faraway et al, 1999; Chaffin, 
2002). 

The second method of predicting posture is done with 
traditional inverse kinematics, which does not use any 
observed data.  A common approach to inverse 
kinematics is called the pseudo-inverse method.  With 
such methods, the motion of each link segment is 
modeled to formulate a set of governing joint equations 
(Jung et al, 1995; Jung and Choe, 1996; Wang, 1999; 
Tolani and Badler, 2000).  With this method however, as 
the model’s degrees of freedom increase, the systems of 
equations become increasingly challenging to solve. 

A different inverse kinematics method involves 
optimization.  Optimization is used to find a set of joint 
angle values (each subject to their own constraints), that 
are used to minimize certain human performance 
measures, such as discomfort.  The constraint in the 
optimization problem is restricting an end-effector to 
reach a target point (Abdel-Malek et al, 2001; Mi et al, 
2002).  This approach does not require any prerecorded 
data and can be computed efficiently (Farrell and Marler, 
2004).  Most recent advancements concerning the 
number of end-effectors in the posture prediction 
problem have been creating a dual-arm posture 
prediction, where end-effectors are placed at the end of 
each arm, each having their own individual constraint 
(Farrell and Marler, 2005; Yang et al 2004, 2006, 2007).  
When legs are included in the model, end-effector can 
also be placed at the end of each leg, since it is also the 
end of each link segment.  The development of a 
multiple end-effectors feature described in this paper 
extends the current state of the art and allows a user to 
place any number of end-effectors on any part of the 
body. This is a new capability with respect both to 
research efforts and currently available human-modeling 
products.  In addition to incorporating multiple end-
effectors, shared memory is leveraged to increase 
speed.  Shared memory allows multiple programs to 
access the same memory location, so when one 
program changes a variable’s value, all other programs 
that are allowed immediately have access to that 
change.  This makes it an efficient method of passing 
data.  If posture prediction is to provide an efficient 
design tool, computational efficiency is critical.  Trade-off 
analysis of various design alterations necessitates the 
use of real-time simulations, and shared memory can 
enable this.  Shared memory is typically used as a 
method of inter-process communication, which is a way 
of exchanging data between multiple programs running 
at the same time.  When applications have a need for 
more efficient communications and higher performance, 
parallel processing is considered, because multiple 
processes can run simultaneously.  Using shared 
memory for this function allows one to avoid expensive 
overheads associated with other parallel methods (Wang 
et al, 1999).  However, shared memory has never been 
applied to posture prediction as a way of increasing 
speed.  To increase the speed of posture prediction to 

the point where a user can drag any point on the body 
and the simulation can concurrently predict the 
consequent joint angles in real time provides a new tool 
that saves time and money during ergonomic design 
studies. 

The following section in this paper provides an overview 
of optimization-based posture prediction and how it is 
integrated with 3D visualization.  We then discuss the 
advantages of, and a method for allowing the user to 
specify multiple end-effectors anywhere on the body.  
After that, shared memory is addressed and how it is 
implemented with posture prediction.  Finally, we show 
how combing multiple end-effectors and shared memory 
allows for a new intuitive tool for human modeling 
product design, which allows the user to drag any part of 
the body with realistic human postures being predicted 
and visualized in real time. 

OPTIMIZATION-BASED POSTURE PREDICTION 

This section discusses the fundamental of optimization-
based posture prediction, as implemented in SantosTM, a 
new kind of virtual human developed at VSR (Abdel-
Malek et al, 2006).  Marler et al (2005) explain how the 
most basic posture prediction problem entails having an 
avatar use a natural posture to contact a specified target 
point with an end-effector on a kinematic system such as 
a human arm.  With an optimization-based approach, the 
joint angles for all of the degrees-of-freedom (DOFs) in 
the human model provide the design variables and are 
determined by optimizing an objective function that 
represents a human performance measure.  These 
performance measures can include discomfort, joint 
displacement, potential energy, effort, visual acuity, etc. 

The interface and all interaction with the user are done 
through the Virtools 3D development engine.  To date, 
this interaction has been conducted as follows.  The user 
can select through posture prediction options, such as 
the performance measures mentioned above, toggle 
vision on or off, and toggle collision avoidance on or off.  
There are end-effectors in relation to the end of each link 
series (left and right wrists and ankles), which the user 
can specify targets in the world for each (Farrell et al, 
2005).  Every time a new target is selected for one of 
these end-effectors, Virtools writes out the information 
posture prediction needs to input files and runs posture 
prediction as an executable.  When posture prediction is 
run, it reads the input files, calculates the optimal 
solution of joint angles, and then writes out that solution 
to a separate output file.  Virtools, which has been 
waiting during this time, then reads the solution file and 
applies calculated joint angles to the visualized avatar.  
This entire process can be seen in Figure 1, where each 
file represents different sets of input data for posture 
prediction. 



 

 

Figure 1. Previous method of communication between Virtools and 
posture prediction: file I/O with multiple files containing different sets of 
data. 

 

The use of file I/O as a method of communication was 
originally chosen for developmental purposes and ease 
of debugging.  Overall, the whole posture prediction 
process takes about .05 seconds, depending on the 
complexity of the optimization problem.  This speed is 
fast enough for a real time prediction, but not fast 
enough for a user to drag postures with acceptable 
results. 

MULTIPLE END-EFFECTORS 

The addition of the multiple end-effectors feature to 
posture prediction gives the user more freedom and 
flexibility to setup a posture prediction simulation.  
Previously, the posture prediction code could only 
calculate postures for a set number of end-effectors that 
also could only be specified in relation to the end of 
segment links (left and right wrists and ankles).  A 
picture of the upper body end-effector locations can be 
seen in Figure 2. 

 

Figure 2. Previously, upper body end-effectors could be specified in 
relation to the left and right wrist joints. 

 

In order to give the user complete freedom to set up a 
posture prediction simulation, he or she should be 
allowed to select any part of the digital human’s body as 
an end-effector, and give that point an individual target in 
the world.  This is the basic problem that the multiple 
end-effectors feature addresses.  In order to accomplish 
this, the posture prediction code needs to be able to 
perform inverse kinematics for segments in the human 
model other than the link ends, and also accept any 
number of end-effector/target pairs as input.  Once that 
is complete, the user interface needs to be updated to 
communicate these new inputs to the posture prediction 
code, as well as updated to allow a user to select any 
part of the digital human body. 

Since there can now be any number of end-effectors 
accepted by the code, the first important change was 
that the variables related to end-effectors and their 
targets must now by dynamic.  Whenever the code is 
executed it should now dynamically allocate the memory 
for the necessary arrays associated with those variables.  
The optimization problem set up in the code must also 
be changed dynamically since each end-effector and 
target are individual constraints that must be satisfied. 

Posture prediction with SantosTM uses the Denavit-
Hatenberg method (Denavit and Hartenberg, 1955).  
With this method, there are individual transformation 
matrices that describe the relationship between 
connected joints in a robotic model. In the Figure 3, the 
first spine joint would be the bottom right degrees of 
freedom, which acts as the global position of the world 
for SantosTM, and the right wrist would be the top left 
degrees of freedom.  Targets for the end-effectors are 
given in the world with respect to that global spine joint, 
so it is necessary to know how far away an end-effector 
(which are always defined by the local coordinates of the 
parent joint) are from the global coordinate system. 

 

Figure 3. Each joint has its own set of local coordinate systems and 
there is a transformation matrix that describes how to get from one to 
the next. 

 

Previously, to compute the location of an end-effector in 
relation to a global root coordinate system, the posture 



prediction code would start at the first spine joint, and 
then multiply each transformation matrix along the link 
chain out to the end-effector related to the wrist.  Once 
all transformation matrices are multiplied out and then 
multiplied by the local vector related to the last 
coordinate system, the global position of the end-effector 
is known.  This can then be compared to the global 
position of its target.  The distance between the two is 
then used in the optimization problem to be constrained 
to zero.  With the inclusion of a dual-arm system, the 
code would have to compute this twice, one for each 
wrist end-effector (Farrell et al, 2005). 

In order to use multiple end-effectors, the code must 
now loop for each end-effector.  End-effectors are 
related to their closest parent joint (i.e. end-effector on 
the forearm is related to the last elbow joint).  However, 
since end-effectors can now be placed anywhere on the 
body, the multiplication of transformation matrices for a 
certain end-effector must stop at that parent joint, and 
then compute the position from the global root joint.  
Figure 4 demonstrates the relationship between end-
effectors on the human body and the parent coordinate 
system they are taken with respect to.  The distance 
between each end-effector and target can now be 
computed, and the optimization code can run until each 
pair or end-effectors and targets is essentially equal, 
which results in a realistic human posture for the digital 
human while end-effectors are constrained to touching 
the targets.  This solution is expressed in joint angles for 
the entire body. 

 

Figure 4. Several end-effectors (blue spheres) and their local parent 
joint coordinate systems in which their coordinates are related to. 

 

On the interface side, end-effectors are also now 
variable and dynamic.  Every time a user creates a new 
end-effector on the digital human’s body, its local 
position in relation to its parent joint must be determined.  
End-effector local positions and the targets associated to 
each end-effector are inputs to the posture prediction 
code.  The interface must make sure to only execute 
posture prediction when a new end-effector and target 
pair has been created by the user (only creating new 

targets without paired end-effectors or vice versa should 
not result in a new posture). 

Combing the interface and code together now allows the 
user to setup a posture prediction simulation with point 
constraints anywhere on the body.  An example of this 
can be seen in Figure 5 with blue end-effector spheres 
and white target spheres. 

 

Figure 5.  Predicted posture with end-effectors (blue spheres) placed 
on the multiple locations on the digital human’s body, each given its 
own target (white spheres). 

 

SHARED MEMORY 

Given the ability to specify any number of targets and 
associated end-effectors, we now develop the ability to 
communicate faster and simultaneously perform posture 
prediction.  That is, posture prediction operates in real 
time as various points on the avatar are positioned.  
Whereas currently available animation and surface 
modeling tools (Maya, 3D Studio Max, etc.) have basic 
inverse kinematics capabilities that essentially yield 
random postures for a specified target point, SantosTM 
incorporates what we call Advanced IK to predict 
realistic human postures. 

However, constantly opening/closing and reading/writing 
of files (Figure 1) adds unnecessary overhead and 
delays, so a more sophisticated communication method 
was needed.  Shared memory is a solution that allows 
both processes to have access to the same memory 
block of common variables.  When one process changes 
a variable value, the other process immediately has 
access to the new value.  This results in much faster 
communication and synchronization between multiple 
processes. 



As mentioned previously and shown in Figure 1, the 
following process is used for communication between 
Virtools and the posture prediction code (the previous 
methods that get improved through shared memory 
implementation are colored in red): 

1. Virtools opens files, writes information, and closes 
the files 

2. Posture prediction execution begins 
3. Posture prediction opens files, reads information, 

and closes the files 
4. Posture prediction calculates optimal human posture 

solution 
5. Posture prediction opens files, writes the solution, 

and closes the files 
6. Virtools opens files, reads the solution, and closes 

the files 
7. Virtools applies the solution visually to the avatar 
 
Shared memory replaces this slow and primitive method 
of communication.  Shared memory is achieved by 
creating a shared memory DLL.  A DLL stands for 
dynamic-link library and can include programmed 
subroutines, data, and resources that can be used by 
multiple platforms and programming languages.  In a 
shared memory DLL, all of the variables that are shared 
among multiple processes are defined, and then get and 
set functions for each of these variables are also 
defined.  To have access to these variables, each 
specific process needs to load the shared memory DLL 
and use the get and set functions to either retrieve a 
value or change it.  A basic diagram of two processes 
using a shared memory DLL can be seen in Figure 6. 

Figure 6. Basic shared memory diagram with multiple processes able 
to get and set common shared variables defined in the shard memory 
DLL. 

 

In order to use shared memory, the communication 
sections of the posture prediction code need to be 
changed.  Before any communication occurs though, the 
shared memory DLL needs to be loaded into the 
program.  Once it is loaded the code has access to all 
the get and set functions, which in turn gives it access to 
all the shared variables.  The posture prediction code is 
changed by replacing all the read statements with get-
variable function calls, and all the write statements are 
replaced with set-variable function calls. 

The Virtools interface was changed by removing all the 
building blocks that write out the posture information.  A 
building block is a visual representation of a block of 
code that achieves a specific function, which is used in 
Virtools interface development.  Once the write file 
building blocks were removed, a new building block was 
created.  This new building block first loads the shared 
memory DLL, and then sets all of the appropriate values 
before posture prediction is executed.  Once posture 
prediction computes an optimal posture and the values 
have been set back to the shared memory location, 
Virtools can then access them and apply the results.  
Overall, the new process when a user wants a new 
posture predicted can be described as follows (the 
improved methods are colored in red): 

1. Virtools loads the shared memory DLL and sets all 
posture values 

2. Posture prediction execution begins  
3. Posture prediction loads the shared memory DLL 

and gets all the input values 
4. Posture prediction calculates optimal human posture 

solution 
5. Posture prediction opens sets the solution in shared 

memory 
6. Virtools gets the solution 
7. Virtools applies the solution visually to the avatar 
 
The steps are now simplified, and each one does not 
take as long as they previously did using file I/O. 
 
One particular challenge that was overcome was the 
implementation of shared memory DLLs with Fortran 
code.  Since the posture prediction code is written in 
Fortran, it can only load DLLs that are in the same 
directory as the actual executable.  Since the shared 
memory DLL may not be in that directory, a method 
needed to be made to specify the path of the DLL.  
Since the C++ language is capable of loading remote 
DLLs, a C++ wrapper DLL was created.  The posture 
prediction code can load this local wrapper DLL, which 
can then load the remote shared memory DLL.  This 
entire process can be seen in Figure 7. 
 

 

Figure 7. Posture prediction shared memory process with SantosTM 

 



While the C++ wrapper does add a little more overhead, 
the shared memory communication process is still 
significantly faster than file I/O.  Averaging 100 trials for 
each under the same conditions, the communication 
speed with file I/O came out to be .024 seconds while 
shared memory was .0041 seconds. This is 5.85 times 
faster than the previous method of communication, 
which is a valuable improvement that was needed in 
order for the tool described in this paper to be possible.  
Now, Instead of the entire posture prediction process 
taking a split second from a user’s perspective, it now 
appears to be instantaneous with the posture prediction 
code and user interface synchronized. 

COMBINING MULTIPLE END-EFFECTORS AND 
SHARED MEMORY 

With posture prediction running at this faster speed, it 
meets the speed requirement to be called constantly in a 
loop while Virtools is also constantly looping and 
updating the avatar with the predicted posture.  A user 
can click and drag targets around just as fast as the 
posture to touch that target is computed, so there 
appears to be motion.  Combining this with multiple end-
effectors posture prediction gives the user the ability to 
click and drag any part of the body, but while 
dynamically displaying realistically predicted postures.  
This is a new and intuitive method to allow users to 
setup or change posture prediction simulations. 

Some changes needed to be made to both the flow of 
logic in the posture prediction code as well as the 
interface to achieve this new feature.  Once a user clicks 
a point somewhere on the avatar’s body (creating an 
end-effector), both the posture prediction code and user 
interface enter a mode where they are running at the 
same time and continually communicating the input and 
results with each other.  This mode then stays on as the 
mouse is down.  Now as the mouse is dragged, the 
target for that individual end-effector is updated to that 
mouse point, which posture prediction uses as the target 
input.  The visualization of the joint posture for the avatar 
is updated dynamically.  As seen in Figure 8, the blue 
sphere represents both the end-effector and the target 
as it is dragged smoothly in one motion. 

 

 

Figure 8. End-effector being applied to the right hand and then 
dragged as postures are updated. 

 

Since the posture prediction code has multiple end-
effectors capabilities, any part of the body can be 
chosen as an end-effector and then dragged.  As new 
end-effectors are added, the previous end-effectors stay 
constrained to their given target.  Users can also easily 
delete any end-effector or target, or update a current 
value.  Currently the interface is set up so that a left click 
creates end-effectors, and a right click can drag any 
current point already defined, or replace the closest end-
effector with the current click.  Since it is still in early 
stages, there are still many possibilities for further 
development. 

CONCLUSION 

Throughout this paper a major evolution of the SantosTM 
posture prediction code and user interface have been 
described.  This has resulted in a new intuitive method 
for running posture prediction for digital humans.  This 
was accomplished through a new method for using any 
number of user-specified end-effectors with optimization-
based posture prediction.  In addition, a new 
methodology for incorporating shared memory was 
leveraged to provide a more efficient way for multiple 
processes to communicate with each other.  This 
increased computational speed substantially.  
Combining the multiple end-effectors capability with 
shared memory communication results in a novel tool for 
human posture analysis and product design.  This 
represents not only a practical and intuitive product but 
also the significant advancement in the field of human 
posture prediction. 

Typically, posture analysis is conducted by having an 
expert user laboriously position and orient and digital 
mannequin.  This is the case with many other human 
modeling software packages since they do not have 
realistic human postures that are computed.  Positioning 
a digital mannequin into a posture that looks realistic 
may not only produce inaccurate results, but this can 
take a significant amount of time as well.  Engineers or 
ergonomists are needed to analyze the resulting posture 
and recommend design changes.  The capabilities 
presented in this paper promise to revolutionize this 
process, and save time and money since a designer will 
be able to interact with a human posture prediction tool 
dynamically while being able to drag around any part of 
the avatar’s body.  Santos’sTM new posture-prediction 
functionality provided a much needed alternative to 
currently available inverse kinematics tools. 

Future work for the posture prediction code will involve a 
complete conversion to C++, which will thus eliminate 
the need for a shared memory wrapper for 
communication, and also increase the efficiency.  In 
addition, using shared memory as a faster method of 
communication can be applied to other features of 
human modeling software products as well, which will 
increase the communication efficiency of a whole human 
modeling software package.  Since this was the first 
iteration of this Advanced IK tool which was made to 
work with an already existing code, future iterations with 



code redesigns may prove to have more improvements 
in structure and performance. 
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